RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method

      한글로보기

      https://www.riss.kr/link?id=A103375447

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we particularly deal with no Fp-rational two-torsion elliptic curves, where Fp is the prime field of the characteristic p. First we introduce a shift productbased polynomial transform. Then, we show that the parities of (#E − 1)/2 and...

      In this paper, we particularly deal with no Fp-rational
      two-torsion elliptic curves, where Fp is the prime field of
      the characteristic p. First we introduce a shift productbased
      polynomial transform. Then, we show that the
      parities of (#E − 1)/2 and (#E΄− 1)/2 are reciprocal to each
      other, where #E and #E΄ are the orders of the two
      candidate curves obtained at the last step of complex
      multiplication (CM)-based algorithm. Based on this
      property, we propose a method to check the parity by
      using the shift product-based polynomial transform. For a
      160 bits prime number as the characteristic, the proposed
      method carries out the parity check 25 or more times
      faster than the conventional checking method when 4
      divides the characteristic minus 1. Finally, this paper
      shows that the proposed method can make CM-based
      algorithm that looks up a table of precomputed class
      polynomials more than 10 percent faster.

      더보기

      참고문헌 (Reference)

      1 "Weierstraβ Elliptic Curves and Side Channels Attacks" 335-345, 2002

      2 "Speeding the Pollard and Elliptic Curve Methods of Factorization Mathematics of Computation" 243-264, 1987

      3 "Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms" Paar 248-258, 2000

      4 "On the Construction of Prime Order Elliptic Curves" 309-322, 2003

      5 "Implementing the Asymptotically Fast Version of the Elliptic Curve Primality Proving Algorithm"

      6 "Handbook of Elliptic and Hyperelliptic Curve Cryptography" 280-285, 2005

      7 "Generating Elliptic Curves of Prime Order" 142-158, 2001

      8 "Fermat Quotients and the Polynomial Time Discrete Log Algorithm for Anomalous Elliptic Curve" Univ 81-92, 1998

      9 "Fast Generation of Elliptic Curves with Prime Order over Fp2c" 347-356, 2003

      10 "Encyclopedia of Mathematics and Its Applications" Cambridge University Press 1984

      1 "Weierstraβ Elliptic Curves and Side Channels Attacks" 335-345, 2002

      2 "Speeding the Pollard and Elliptic Curve Methods of Factorization Mathematics of Computation" 243-264, 1987

      3 "Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms" Paar 248-258, 2000

      4 "On the Construction of Prime Order Elliptic Curves" 309-322, 2003

      5 "Implementing the Asymptotically Fast Version of the Elliptic Curve Primality Proving Algorithm"

      6 "Handbook of Elliptic and Hyperelliptic Curve Cryptography" 280-285, 2005

      7 "Generating Elliptic Curves of Prime Order" 142-158, 2001

      8 "Fermat Quotients and the Polynomial Time Discrete Log Algorithm for Anomalous Elliptic Curve" Univ 81-92, 1998

      9 "Fast Generation of Elliptic Curves with Prime Order over Fp2c" 347-356, 2003

      10 "Encyclopedia of Mathematics and Its Applications" Cambridge University Press 1984

      11 "Elliptic Curves in Cryptography" Cambridge University Press -265, 1999

      12 "Constructive and Destructive Facets of Weil Descent on Elliptic Curves" 2000

      13 "Construction of Elliptic Curves with Prime Order and Estimation of Its Complexity" 1269-1277, 1999

      14 "A Software Library for Elliptic Curve Cryptography"

      15 "A Method for Distinguishing the Two Candidate Elliptic Curves in CM Method" 2004

      16 "A Method for Checking the Parity of Technical Report of IEICE" 1-6, 2004

      17 "A Library for doing Number Theory"

      18 "A Course in Computational Algebraic Number Theory" 2000

      19 "A Consideration on the Order of Genus 2 Hyperelliptic Curve" 28 (28): 889-892, 2005

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2005-09-27 학술지등록 한글명 : ETRI Journal
      외국어명 : ETRI Journal
      KCI등재
      2003-01-01 평가 SCI 등재 (신규평가) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.78 0.28 0.57
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.47 0.42 0.4 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼