RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      System for Monitoring Avian Cardiac Output and Breathing Patterns Using Transmission-Type Microwaves

      한글로보기

      https://www.riss.kr/link?id=A108418889

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We report the development of a non-contact monitoring device for avian cardiac output and breathing patterns based on the anterior thoracic air sac pressure that uses transmission-type microwaves (2,400−2,500 MHz, continuous wave). Since the phase w...

      We report the development of a non-contact monitoring device for avian cardiac output and breathing patterns based on the anterior thoracic air sac pressure that uses transmission-type microwaves (2,400−2,500 MHz, continuous wave). Since the phase waveform represents the dielectric constant change, the phase reflects −j/ωc and the dielectric constant change is related to blood flow. The magnitude waveform is reflected from the electronic resistance of tissues due to the expansion of the anterior thoracic air sac, which mainly consists of the thoracic wall. To confirm these waveforms, pigeons and chickens were used for testing. To validate the output waveforms of the developed transmission- type microwave device, data from esophageal catheters and pressure sensors in the anterior thoracic air sac, abdominal air sac, and intraoral cavity were obtained. The waveform for the esophageal catheter, where electrocardiogram electrodes and an angular velocity sensor were installed, correlates with cardiac output. A heart sound microphone was used to confirm the closing sound of the arterial and mitral valves. The experimental results confirm that a linear waveform synchronized with the cardiac blood flow and the anterior thoracic air sac pressure of birds was obtained using transmission-type microwaves. The proposed device, which can monitor cardiac output and respiratory patterns, may enable the early screening of cytokine storms caused by avian influenza viruses. Existing devices use Doppler radar in the 10 to 77 GHz band; these high frequencies are reflected by the chest wall and do not reach deep into body, making it impossible to monitor the blood flow inside the body.

      더보기

      참고문헌 (Reference) 논문관계도

      1 K. Z. Li, "Research on non-contact respiration and heart rate monitoring algorithm based on 77G FMCW radar" 915-920, 2022

      2 M. Alizadeh, "Remote heart rate sensing with mm-wave radar" 1-2, 2018

      3 A. Mase, "Real-time evaluation of heart rate and heart rate variability using microwave reflectometry" 160-162, 2018

      4 K. Higashi, "Precise heart rate measurement using non-contact Doppler radar assisted by machine-learning-based sleep posture estimation" 788-791, 2019

      5 L. Ren, "Phase-based methods for heart rate detection using UWB impulse Doppler radar" 64 (64): 3319-3331, 2016

      6 H. Tan, "Non-contact heart rate tracking using Doppler radar" 1711-1714, 2012

      7 M. Aweda, "Microwave radiation exposures affect cardiovascular system and antioxidants modify the effects" 2 (2): 246-251, 2011

      8 J. Leroy, "Microfluidic biosensors for microwave dielectric spectroscopy" 229 : 172-181, 2015

      9 F. Farsaci, "Low frequency dielectric characteristics of human blood : A non-equilibrium thermodynamic approach" 188 : 113-119, 2013

      10 T. Lauteslager, "Intracranial heart ratedetection using UWB radar" 119-122, 2016

      1 K. Z. Li, "Research on non-contact respiration and heart rate monitoring algorithm based on 77G FMCW radar" 915-920, 2022

      2 M. Alizadeh, "Remote heart rate sensing with mm-wave radar" 1-2, 2018

      3 A. Mase, "Real-time evaluation of heart rate and heart rate variability using microwave reflectometry" 160-162, 2018

      4 K. Higashi, "Precise heart rate measurement using non-contact Doppler radar assisted by machine-learning-based sleep posture estimation" 788-791, 2019

      5 L. Ren, "Phase-based methods for heart rate detection using UWB impulse Doppler radar" 64 (64): 3319-3331, 2016

      6 H. Tan, "Non-contact heart rate tracking using Doppler radar" 1711-1714, 2012

      7 M. Aweda, "Microwave radiation exposures affect cardiovascular system and antioxidants modify the effects" 2 (2): 246-251, 2011

      8 J. Leroy, "Microfluidic biosensors for microwave dielectric spectroscopy" 229 : 172-181, 2015

      9 F. Farsaci, "Low frequency dielectric characteristics of human blood : A non-equilibrium thermodynamic approach" 188 : 113-119, 2013

      10 T. Lauteslager, "Intracranial heart ratedetection using UWB radar" 119-122, 2016

      11 T. Dai, "In vivo blood characterization from bioimpedance spectroscopy of blood pooling" 58 (58): 3831-3838, 2009

      12 V. Petrović, "High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave doppler radar" 7 : 74721-74733, 2019

      13 P. Zhao, "Heart rate sensing with a robot mounted mmwave radar" 2812-2818, 2020

      14 N. Simicevic, "FDTD simulation of exposure of biological material to electromagnetic nanopulses" 50 (50): 347-360, 2005

      15 G. Li, "Effects of electromagnetic field exposure on electromagnetic properties of biological tissues" 38 (38): 604-610, 2011

      16 L. Gun, "Effective permittivity of biological tissue: Comparison of theoretical model and experiment" 2017 : 7249672-,

      17 D. Obeid, "Doppler radar for heartbeat rate and heart rate variability extraction" 2011

      18 E. Marzec, "Dielectric relaxation of normothermic and hypothermic rat corneas" 101 : 132-137, 2015

      19 E. Marzec, "Dielectric properties of a protein-water system in selected animal tissues" 65 (65): 89-94, 2005

      20 Y. Llave, "Dielectric properties and model food application of tylose water pastes during microwave thawing and heating" 2015

      21 Y. Otaki, "Dielectric permittivity change detects the process of blood coagulation : Comparative study of dielectric coagulometry with rotational thromboelastometry" 145 : 3-11, 2016

      22 K. Nakada, "Development and physiological assessments of multimedia avian esophageal catheter system" 5 (5): 121-130, 2018

      23 Isao Nakajima ; Sachie Tanaka ; Kokuryo Mitsuhashi ; Jun-ichi Hata ; Tomo Nakajima, "Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices" 한국멀티미디어학회 6 (6): 293-302, 2019

      24 Isao Nakajima ; Ichiro Kuwahira ; Shuho Hori ; Kokuryo Mitsuhashi, "Correlation of Axillary Artery Pressure and Phase of Esophageal Impedance in Chickens" 한국멀티미디어학회 9 (9): 161-170, 2022

      25 J. Sato, "Correlation between microwave and blood pressure response waveforms" 1-2, 2018

      26 P. F. Battley, "Contrasting Extreme Long-Distance Migration Patterns in Bar-Tailed Godwits Limosa lapponica"

      27 W. J. K. Raymond, "Complex permittivity measurement using capacitance method from 300 kHz to 50 MHz" 46 (46): 3796-3801, 2013

      28 H. F. Cook, "A comparison of the dielectric behaviour of pure water and human blood at microwave frequencies" 3 (3): 249-255, 1952

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼