RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Simulation and experimental investigation of a ballistic compression soft recovery system

      한글로보기

      https://www.riss.kr/link?id=A107231262

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A soft recovery system is used to arrest a supersonic object over a limited distance in a controlled manner. This may be achieved through ballistic compression of gas. This work explains the motion of a supersonic object passing through a ballistic c...

      A soft recovery system is used to arrest a supersonic object over a limited distance in a controlled manner. This may be achieved through ballistic compression of gas.
      This work explains the motion of a supersonic object passing through a ballistic compression decelerator i.e., pressurized gas column initially sandwiched between two diaphragms. The accompanying mechanics is complex and includes diverse effects such as separation of shock from the supersonic object, travelling shocks, shock reflections, creation of a new shock, emergence and dissolution of contact discontinuities and expansion waves, and shock-shock interactions. In this work, these phenomena have been numerically and experimentally studied.
      While the method of characteristics was used to solve Euler’s equations in continuous regions, jump conditions derived from control volume considerations were used to obtain solutions across discontinuities. In this way, a duly validated finite difference method computer program was developed to analyze the problem. Finally, simulation predictions were validated by conducting experiments on a 7.62 mm soft recovery system tube. Our results showed that, an object having an entry velocity of 880 m/s, left the SRS with a velocity that was lower by 47 % from simulation predictions. Further analysis showed that friction between the object and tube was a major contributor to this gap. Post accounting for friction, the difference between numerical analysis and experimental data got reduced to about 5 % at most locations, and to 17 % at the end of the SRS. We attribute this residual difference between observations and simulations to build up of pressure at a location post passage of shock by it. Our 2-D finite volume study results, which are consistent with earlier research, as well as with our experimental data, show that such a phenomenon is prominent particularly in narrow tubes due to development of significantly thick turbulent boundary layers.

      더보기

      참고문헌 (Reference)

      1 J. M. Austin, "Wave propagation in gaseous small-scale channel flows" 21 (21): 547-557, 2011

      2 R. J. Emrich, "Wall effects in shock tube flow" 1 (1): 14-23, 1958

      3 W. Bleakney, "The shock tube: a facility for investigations in fluid dynamics" 20 (20): 807-815, 1949

      4 E. L. Resler, "The production of high temperature gases in shock tubes" 23 (23): 1390-1399, 1952

      5 C. B. Laney, "The Riemann problem, Computational Gasdynamics" Cambridge University Press 72-77, 1998

      6 A. H. Shapiro, "The Dynamics and Thermodynamics of Compressible Fluid Flow, 2" The Ronald Press Co 960-962, 1954

      7 W. J. Hooker, "Testing time and contact-zone phenomena in shock-tube flows" 4 (4): 1451-1463, 1961

      8 H. Mirels, "Test time in low-pressure shock tubes" 6 (6): 1201-1214, 1963

      9 R. Courant, "Supersonic Flow and Shock Waves" Interscience Publishers, Inc 79-197, 1956

      10 D. Lambert, "Soft-recovery of explosively formed penetrators" 14-18, 2005

      1 J. M. Austin, "Wave propagation in gaseous small-scale channel flows" 21 (21): 547-557, 2011

      2 R. J. Emrich, "Wall effects in shock tube flow" 1 (1): 14-23, 1958

      3 W. Bleakney, "The shock tube: a facility for investigations in fluid dynamics" 20 (20): 807-815, 1949

      4 E. L. Resler, "The production of high temperature gases in shock tubes" 23 (23): 1390-1399, 1952

      5 C. B. Laney, "The Riemann problem, Computational Gasdynamics" Cambridge University Press 72-77, 1998

      6 A. H. Shapiro, "The Dynamics and Thermodynamics of Compressible Fluid Flow, 2" The Ronald Press Co 960-962, 1954

      7 W. J. Hooker, "Testing time and contact-zone phenomena in shock-tube flows" 4 (4): 1451-1463, 1961

      8 H. Mirels, "Test time in low-pressure shock tubes" 6 (6): 1201-1214, 1963

      9 R. Courant, "Supersonic Flow and Shock Waves" Interscience Publishers, Inc 79-197, 1956

      10 D. Lambert, "Soft-recovery of explosively formed penetrators" 14-18, 2005

      11 J. Holzle, "Soft recovery of large calibre flying processors" 373-378, 2001

      12 Guang Zhang, "Numerical simulation of shock wave and contact surface propagation in micro shock tubes" 대한기계학회 29 (29): 1689-1696, 2015

      13 H. Mirels, "Nonuniformities in Shock-tube Flow due to Unsteady-boundary-layer Action" National Advisory Committee for Aeronautics 1957

      14 E. L. Petersen, "Nonideal effects behind reflected shock waves in a high-pressure shock tube" 405-420, 2001

      15 J. Anderson, "Modern Compressible Flow - With Historical Perspective" McGraw-Hill Publishing Company 1-31, 1990

      16 D. E. Zeitoun, "Microsize and initial pressure effects on shock wave propagation in a tube" 24 (24): 515-520, 2014

      17 E. V. Clarke, "Large Caliber Projectile Soft Recovery" Ballistic Research Laboratory, Aberdeen Proving Ground 1981

      18 D. R. White, "Influence of diaphragm opening time on shocktube flows" 4 (4): 585-599, 1958

      19 K. T. McDonald, "Entropy Generation in the Merging of Two Ideal Gases" Joseph Henry Laboratories, Princeton University 2013

      20 D. T. Chung, "Development of a soft recovery system of supersonic projectiles" 60 (60): 3-14, 2012

      21 G. Mathur, "Design of a system for arresting supersonic projectiles" Indian Institute of Technology 2019

      22 Seungsoo Lee, "Design Study of a Small Scale Soft Recovery System" 대한기계학회 20 (20): 1961-1971, 2006

      23 T. T. N. Nguyen, "Controlling blast wave generation in a shock tube for biological applications" 500 (500): 2014

      24 Arun Kumar R, "Computational study of the unsteady flow characteristics of a micro shock tube" 대한기계학회 27 (27): 451-459, 2013

      25 P. A. Thompson, "Compressible Fluid Dynamics" McGraw-Hill Company 1972

      26 R. N. Teng, "Ballistic Compression Decelerator"

      27 R. J. Emrich, "Attenuation in the shock tube" 24 (24): 360-363, 1953

      28 A. F. Amir, "An experimental evaluation of shock wave strength and peak pressure in a conventional shock tube and a free-piston compressor" 1-10, 2008

      29 R. L. Trimpi, "A Theory for Predicting the Flow of Real Gases in Shock Tubes with Experimental Verification" National Advisory Committee for Aeronautics 1955

      30 A. Birk, "A Novel Soft Recovery System for the 155-mm Projectile and Its Numerical Simulation" Army Research Laboratory, Aberdeen Proving Ground 2001

      31 N. A. Fomin, "110 years of experiments on shock tubes" 83 (83): 1118-1135, 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼