RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A Census of Plasma Waves and Structures Associated With an Injection Front in the Inner Magnetosphere

      한글로보기

      https://www.riss.kr/link?id=O119565920

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatt...

      Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g., occurrence rates, amplitudes, and spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space, and consequently, high‐resolution time domain electric and magnetic field data are required to uniquely identify such structures and waves as well as determine their properties. However, most high‐resolution fields data are collected with a strong bias toward high‐amplitude signals in a preselected frequency range, strongly biasing observations of structure and wave properties. In this study, an ∼45 min unbroken interval of 16,384 samples/s field burst data, encompassing an electron injection event, is examined. This data set enables an unbiased census of the kinetic structures and nonlinear waves driven by this electron injection, as well as determination of their “typical” properties. It is found that the properties determined using this unbiased burst data are considerably different than those inferred from amplitude‐biased burst data, with significant implications for wave‐particle interactions due to kinetic structures and nonlinear waves in the inner magnetosphere.


      A zoo of nonlinear waves and kinetic structures is observed in conjunction with an electron injection; their properties are determined
      The injection is composed of four separate magnetic compressions, each of which drives wave modes across the observed spectrum
      Nonlinear wave and kinetic structure properties reveal weak phase space holes and pervasive harmonics of whistler mode waves

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼