The electrochemical reactivity of Li14P6S22 (Li7P3S11) as a sulfur‐based solid electrolyte for Li+ conduction was evaluated by electrochemical cell tests and ab initio calculations to determine its utility for all‐solid‐state lithium secondary b...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O120630960
2018년
-
0253-2964
1229-5949
KCI등재;SCOPUS;SCIE
학술저널
1149-1159 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
The electrochemical reactivity of Li14P6S22 (Li7P3S11) as a sulfur‐based solid electrolyte for Li+ conduction was evaluated by electrochemical cell tests and ab initio calculations to determine its utility for all‐solid‐state lithium secondary b...
The electrochemical reactivity of Li14P6S22 (Li7P3S11) as a sulfur‐based solid electrolyte for Li+ conduction was evaluated by electrochemical cell tests and ab initio calculations to determine its utility for all‐solid‐state lithium secondary batteries. Reversible removal and incorporation of lithium into Li14P6S22 with a gradient of lithium concentration was confirmed as thermodynamically unfavorable. Otherwise, reductive/oxidative decomposition of Li14P6S22 by the addition/removal of lithium was thermodynamically favorable. The electrochemical stability window (ESW) of Li14P6S22 was 0.429 V between 1.860 and 2.289 V (Li/Li+). The lowest potential of Li elimination was 2.289 V and occurred as oxidative decomposition. The highest potential of lithium addition was 1.860 V as reductive decomposition. Formation of Li14+xP6S22 and Li14−xP6S22 could be simultaneously achieved with reductive and oxidative decomposition by applying negative and positive over‐potentials. The exposure of Li14P6S22 electrodes to positive and negative electric fields generated a large amount of irreversible specific capacity, which confirmed the oxidative and reductive decomposition. Considering the results of ab initio calculations on ESW and electrochemical cell tests, Li14P6S22 material should be protected from direct contact to the potential of cathode and anode so that it can appropriately serve as a solid electrolyte. The high Li+ conductivity of Li14P6S22 might originate from temporal (kinetic) and endurable formation of Frenkel defects resulting in a Li‐deficient/excess composition of Li14P6S22.
Novel Indazole‐based MKK7–TIPRL Interaction Inhibitors as TRAIL Sensitizers
Copper(I) Complexes Based on Pentamethylene Sulfide: Luminescence Thermochromism of Cu4I4(C5H10S)4
Solid‐State NMR Study on Phosphorus Species in Phosphorus‐modified ZSM‐5 Zeolite