1 염종민 ; 한경수 ; 김인환, "장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구" 한국지리정보학회 13 (13): 111-124, 2010
2 김서연 ; 윤유정 ; 정예민 ; 권춘근 ; 서경원 ; 이양원, "위성기반 산불피해지수를 이용한 북한지역 산불피해지 분석" 대한원격탐사학회 38 (38): 1861-1869, 2022
3 최승필 ; 김동희 ; 建石陸太郞, "식생의 분광 반사특성을 이용한 산불 피해지 분석" 대한공간정보학회 14 (14): 89-94, 2006
4 차성은 ; 원명수 ; 장근창 ; 김경민 ; 김원국 ; 백승일 ; 임중빈, "농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가" 대한원격탐사학회 38 (38): 1273-1283, 2022
5 윤형진 ; 정종철, "기계학습을 이용한 Sentinel-2 산불피해등급 분류" 국토연구원 106 : 107-117, 2020
6 박성욱 ; 김형우 ; 이수진 ; 윤예슬 ; 김은숙 ; 임종환 ; 이양원, "고해상도 위성영상과 Fully Convolutional Network를 활용한 산림재해 피해지 탐지" 한국사진지리학회 28 (28): 87-101, 2018
7 Luke Collins, "Training data requirements for fire severity mapping using Landsat imagery and random forest" Elsevier BV 245 : 111839-, 2020
8 Yushi Chen, "Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network" Institute of Electrical and Electronics Engineers (IEEE) 8 (8): 2381-2392, 2015
9 Magdalini Pleniou, "Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area" Elsevier BV 79 : 199-210, 2013
10 T. Loboda, "Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data" Elsevier BV 109 (109): 429-442, 2007
1 염종민 ; 한경수 ; 김인환, "장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구" 한국지리정보학회 13 (13): 111-124, 2010
2 김서연 ; 윤유정 ; 정예민 ; 권춘근 ; 서경원 ; 이양원, "위성기반 산불피해지수를 이용한 북한지역 산불피해지 분석" 대한원격탐사학회 38 (38): 1861-1869, 2022
3 최승필 ; 김동희 ; 建石陸太郞, "식생의 분광 반사특성을 이용한 산불 피해지 분석" 대한공간정보학회 14 (14): 89-94, 2006
4 차성은 ; 원명수 ; 장근창 ; 김경민 ; 김원국 ; 백승일 ; 임중빈, "농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가" 대한원격탐사학회 38 (38): 1273-1283, 2022
5 윤형진 ; 정종철, "기계학습을 이용한 Sentinel-2 산불피해등급 분류" 국토연구원 106 : 107-117, 2020
6 박성욱 ; 김형우 ; 이수진 ; 윤예슬 ; 김은숙 ; 임종환 ; 이양원, "고해상도 위성영상과 Fully Convolutional Network를 활용한 산림재해 피해지 탐지" 한국사진지리학회 28 (28): 87-101, 2018
7 Luke Collins, "Training data requirements for fire severity mapping using Landsat imagery and random forest" Elsevier BV 245 : 111839-, 2020
8 Yushi Chen, "Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network" Institute of Electrical and Electronics Engineers (IEEE) 8 (8): 2381-2392, 2015
9 Magdalini Pleniou, "Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area" Elsevier BV 79 : 199-210, 2013
10 T. Loboda, "Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data" Elsevier BV 109 (109): 429-442, 2007
11 Ronneberger, O, "Medical image computing and computer-assisted intervention – MICCAI 2015" Springer 234-241, 2015
12 Zhang, Y., "Medical image computing and computer assisted intervention – MICCAI 2021" Springer 14-24, 2021
13 D.P. Roy, "Landsat-8: Science and product vision for terrestrial global change research" Elsevier BV 145 : 154-172, 2014
14 Riyanti Djalante, "Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction" Elsevier BV 1 : 100001-, 2019
15 Emilio Chuvieco, "Historical background and current developments for mapping burned area from satellite Earth observation" Elsevier BV 225 : 45-64, 2019
16 Tsung-Yi Lin, "Focal Loss for Dense Object Detection" Institute of Electrical and Electronics Engineers (IEEE) 42 (42): 318-327, 2020
17 S. Escuin, "Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images" Informa UK Limited 29 (29): 1053-1073, 2007
18 Kendra K. McLauchlan, "Fire as a fundamental ecological process: Research advances and frontiers" Wiley 108 (108): 2047-2069, 2020
19 Fernando Carvajal-Ramírez, "Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV" MDPI AG 11 (11): 993-, 2019
20 Lei Ma, "Deep learning in remote sensing applications: A meta-analysis and review" Elsevier BV 152 : 166-177, 2019
21 Xiao Xiang Zhu, "Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources" Institute of Electrical and Electronics Engineers (IEEE) 5 (5): 8-36, 2017
22 Dimitrios Marmanis, "Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks" Institute of Electrical and Electronics Engineers (IEEE) 13 (13): 105-109, 2016
23 Ke Sun, "Deep High-Resolution Representation Learning for Human Pose Estimation" IEEE 5686-5696, 2019
24 A. L. Westerling, "Climate change and wildfire in California" Springer Science and Business Media LLC 87 (87): 231-249, 2007
25 J. R. Marlon, "Climate and human influences on global biomass burning over the past two millennia" Springer Science and Business Media LLC 1 (1): 697-702, 2008
26 Y. LeCun, "Backpropagation Applied to Handwritten Zip Code Recognition" MIT Press - Journals 1 (1): 541-551, 1989
27 A FERNANDEZ, "Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data*1" Elsevier BV 60 (60): 153-162, 1997
28 C. Domenikiotis, "Agreement assessment of NOAA/AVHRR NDVI with Landsat TM NDVI for mapping burned forested areas" Informa UK Limited 23 (23): 4235-4246, 2002
29 Nitin Namdeo Pise, "A Survey of Semi-Supervised Learning Methods" IEEE 30-34, 2008
30 Jeff Eidenshink, "A Project for Monitoring Trends in Burn Severity" Springer Science and Business Media LLC 3 (3): 3-21, 2007
31 Korea Forest Service, "2022 Wildfire statistics annual"