RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Matrix-based Bayesian Network for efficient memory storage and flexible inference

      한글로보기

      https://www.riss.kr/link?id=A107443230

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>For real-world civil infrastructure systems that consist of a large number of functionally and statistically dependent components, such as transportation systems or water distribution networks, the Bayesian Network (BN) can be a powerful tool for probabilistic inference. In a BN, the statistical relationship between multiple random variables (r.v.’s) is modeled through a directed acyclic graph. The complexity of inference in the BN depends not only on the number of r.v.’s, but also the graphical structure. As a consequence, the application of standard BN techniques may become infeasible even with a moderate number of r.v.’s as the size of an event set exponentially increases with the number of r.v.’s. Moreover, when the exhaustive set that is required for full quantification of a discrete BN node becomes intractably large, only approximate inference algorithms are feasible, which do not require the full (explicit) description of all BN nodes. We address both issues in discrete BNs by proposing a matrix-based Bayesian Network (MBN) that facilitates efficient modeling of joint probability mass functions and flexible inference. The MBN is developed for exact as well as approximate BN inference. The efficiency and applicability of the MBN are demonstrated by numerical examples. The supporting source code and data are available for download at https://github.com/jieunbyun/GitHub-MBN-code.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A new data structure for discrete Bayesian Network is proposed. </LI> <LI> Both exact and approximate algorithms are developed for BN inference. </LI> <LI> Existing BN inference methodologies are compatible with the proposed data structure. </LI> <LI> Exact and approximate inferences of BNs are unified and generalized. </LI> <LI> Numerical examples demonstrate the performance of the proposed methodology. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>For real-world civil infrastructure systems that consist of a large number of functionally and statistically dependent components, such as transportation systems or water distribution networks, ...

      <P><B>Abstract</B></P> <P>For real-world civil infrastructure systems that consist of a large number of functionally and statistically dependent components, such as transportation systems or water distribution networks, the Bayesian Network (BN) can be a powerful tool for probabilistic inference. In a BN, the statistical relationship between multiple random variables (r.v.’s) is modeled through a directed acyclic graph. The complexity of inference in the BN depends not only on the number of r.v.’s, but also the graphical structure. As a consequence, the application of standard BN techniques may become infeasible even with a moderate number of r.v.’s as the size of an event set exponentially increases with the number of r.v.’s. Moreover, when the exhaustive set that is required for full quantification of a discrete BN node becomes intractably large, only approximate inference algorithms are feasible, which do not require the full (explicit) description of all BN nodes. We address both issues in discrete BNs by proposing a matrix-based Bayesian Network (MBN) that facilitates efficient modeling of joint probability mass functions and flexible inference. The MBN is developed for exact as well as approximate BN inference. The efficiency and applicability of the MBN are demonstrated by numerical examples. The supporting source code and data are available for download at https://github.com/jieunbyun/GitHub-MBN-code.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A new data structure for discrete Bayesian Network is proposed. </LI> <LI> Both exact and approximate algorithms are developed for BN inference. </LI> <LI> Existing BN inference methodologies are compatible with the proposed data structure. </LI> <LI> Exact and approximate inferences of BNs are unified and generalized. </LI> <LI> Numerical examples demonstrate the performance of the proposed methodology. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼