RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      보건의료 빅데이터에서의 자연어처리기법 적용방안 연구: 단어임베딩 방법을 중심으로 = A Study on the Application of Natural Language Processing in Health Care Big Data: Focusing on Word Embedding Methods

      한글로보기

      https://www.riss.kr/link?id=A106672366

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      While healthcare data sets include extensive information about patients, many researchers have limitations in analyzing them due to their intrinsic characteristics such as heterogeneity, longitudinal irregularity, and noise. In particular, since the m...

      While healthcare data sets include extensive information about patients, many researchers have limitations in analyzing them due to their intrinsic characteristics such as heterogeneity, longitudinal irregularity, and noise. In particular, since the majority of medical history information is recorded in text codes, the use of such information has been limited due to the high dimensionality of explanatory variables. To address this problem, recent studies applied word embedding techniques, originally developed for natural language processing, and derived positive results in terms of dimensional reduction and accuracy of the prediction model. This paper reviews the deep learning-based natural language processing techniques (word embedding) and summarizes research cases that have used those techniques in the health care field. Then we finally propose a research framework for applying deep learning-based natural language process in the analysis of domestic health insurance data.

      더보기

      참고문헌 (Reference)

      1 Che Z, "xploiting convolutional neural network for risk prediction with medical feature embedding"

      2 Rong X, "Word2vec parameter learning explained"

      3 Tabak YP, "Using electronic health record data to develop inpatient mortality predictive model : Acute Laboratory Risk of Mortality Score(ALaRMS)" 21 (21): 455-463, 2014

      4 Mani S, "Type 2 diabetes risk forecasting from EMR data using machine learning" 2012 : 606-615, 2012

      5 Yang Liu, "Topical word embeddings" Association for the Advancement of Artificial Intelligence 2015

      6 Sahlgren M, "The effects of data size and frequency range on distributional semantic models" Association for Computational Linguistics 2016

      7 Kiela D, "Specializing word embeddings for similarity or relatedness" Association for Computational Linguistics 2015

      8 Giatsoglou M, "Sentiment analysis leveraging emotions and word embeddings" 69 : 214-224, 2017

      9 Rajkomar A, "Scalable and accurate deep learning with electronic health records" 1 : 18-, 2018

      10 Young T, "Recent trends in deep learning based natural language processing" 13 (13): 55-75, 2018

      1 Che Z, "xploiting convolutional neural network for risk prediction with medical feature embedding"

      2 Rong X, "Word2vec parameter learning explained"

      3 Tabak YP, "Using electronic health record data to develop inpatient mortality predictive model : Acute Laboratory Risk of Mortality Score(ALaRMS)" 21 (21): 455-463, 2014

      4 Mani S, "Type 2 diabetes risk forecasting from EMR data using machine learning" 2012 : 606-615, 2012

      5 Yang Liu, "Topical word embeddings" Association for the Advancement of Artificial Intelligence 2015

      6 Sahlgren M, "The effects of data size and frequency range on distributional semantic models" Association for Computational Linguistics 2016

      7 Kiela D, "Specializing word embeddings for similarity or relatedness" Association for Computational Linguistics 2015

      8 Giatsoglou M, "Sentiment analysis leveraging emotions and word embeddings" 69 : 214-224, 2017

      9 Rajkomar A, "Scalable and accurate deep learning with electronic health records" 1 : 18-, 2018

      10 Young T, "Recent trends in deep learning based natural language processing" 13 (13): 55-75, 2018

      11 Himes BE, "Prediction of chronic obstructive pulmonary disease(COPD)in asthma patients using electronic medical records" 16 (16): 371-379, 2009

      12 Nagata M, "Prediction models for risk of type-2 diabetes using health claims" Association for Computational Linguistics 2018

      13 Jin B, "Predicting the risk of heart failure with EHR sequential data modeling" 6 : 9256-9261, 2018

      14 Zhang J, "Patient2vec : a personalized interpretable deep representation of the longitudinal electronic health record" 6 : 65333-65346, 2018

      15 Goldstein BA, "Opportunities and challenges in developing risk prediction models with electronic health records data : a systematic review" 24 (24): 198-208, 2017

      16 Kang H, "National-level use of health care big data and its policy implications" Korea Institute for Health and Social Affairs 2016

      17 Choi E, "Multi-layer representation learning for medical concepts"

      18 Trask A, "Modeling order in neural word embeddings at scale"

      19 De Vine L, "Medical semantic similarity with a neural language model" Association for Computing Machinery 2014

      20 Choi E, "Medical concept representation learning from electronic health records and its application on heart failure prediction"

      21 Cai X, "Medical concept embedding with time-aware attention"

      22 Mikolov T, "Linguistic regularities in continuous space word representations" Association for Computational Linguistics 746-751, 2013

      23 Choi Y, "Learning low-dimensional representations of medical concepts" 2016 : 41-50, 2016

      24 Bai T, "Joint learning of representations of medical concepts and words from EHR data" IEEE 2017

      25 Kennedy EH, "Improved cardiovascular risk prediction using nonparametric regression and electronic health record data" 51 (51): 251-258, 2013

      26 Pennington J, "Glove: global vectors for word representation" Association for Computational Linguistics 2014

      27 Mikolov T, "Extensions of recurrent neural network language model" IEEE 2011

      28 Minarro-Gimenez JA, "Exploring the application of deep learning techniques on medical text corpora" 205 : 584-588, 2014

      29 Bojanowski P, "Enriching word vectors with subword information" 5 : 135-146, 2017

      30 Mikolov T, "Efficient estimation of word representations in vector space"

      31 Choi E, "Doctor AI : predicting clinical events via recurrent neural networks" 56 : 301-318, 2016

      32 Harris ZS, "Distributional structure" 10 (10): 146-162, 1954

      33 Mikolov T, "Distributed representations of words and phrases and their compositionality"

      34 Le QV, "Distributed representations of sentences and documents" International Machine Learning Society 2014

      35 Pham T, "DeepCare: a deep dynamic memory model for predictive medicine" Springer 30-41, 2017

      36 Miotto R, "Deep patient : an unsupervised representation to predict the future of patients from the electronic health records" 6 : 26094-, 2016

      37 Miotto R, "Deep learning for healthcare: review, opportunities and challenges" 19 (19): 1236-1246, 2018

      38 Zhang E, "Deep holistic representation learning from EHR" IEEE 2018

      39 Huang K, "ClinicalBERT: modeling clinical notes and predicting hospital readmission"

      40 Rodriguez P, "Beyond one-hot encoding : lower dimensional target embedding" 75 : 21-31, 2018

      41 Amarasingham R, "An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data" 48 (48): 981-988, 2010

      42 Bellman, R., "Adaptive control processes: a guided tour" Princeton University Press 1972

      43 Chang E, "A study on the advancement of utilization of medical big data" Health Insurance Review & Assessment service 2016

      44 Saltzman JR, "A simple risk score accurately predicts in-hospital mortality, length of stay, and cost in acute upper GI bleeding" 74 (74): 1215-1224, 2011

      45 Bengio Y, "A neural probabilistic language model" 3 : 1137-1155, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2013-03-11 학회명변경 영문명 : The Korean Society Of Health Policy And Administration -> Korean Academy of Health Policy and Management KCI등재
      2013-03-11 학술지명변경 외국어명 : Korean Journal of Health Policy and Administration -> Health Policy and Mangemnet KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.78 0.78 0.8
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.81 0.78 1.372 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼