RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical investigation of LNG gas dispersion in a confined space: An engineering model

      한글로보기

      https://www.riss.kr/link?id=A105079548

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The present study has numerically investigated a dynamic methane leak and dispersion in a confined space. To establish a numerical prediction based engineering model of dynamic gas leak and dispersion in a confined space, numerical experiments are con...

      The present study has numerically investigated a dynamic methane leak and dispersion in a confined space. To establish a numerical prediction based engineering model of dynamic gas leak and dispersion in a confined space, numerical experiments are conducted for variation of a key parameter – leak hole size. Based on the numerical results data, an engineering model is developed. The parameters related to lower flammable limit of the methane were quantitatively analyzed to compare the potential risk due to a gas leak. To quantitatively investigate the flammable region, the longitudinal and transverse directional length is defined and studied. We found that the ratio between longitudinal and transverse directional length can be a bridge to model the flammable region. The aspect ratio of the flammable region is fitted by an exponential function to show the relation with time. Then, an oval-shape model is presented to predict flammable region. Oval-shape model is completed by the combination of aspect ratio relation and a function for transverse length. Finally, we compared the developed engineering model (oval-shape model) and numerical results. The engineering model can predict the flammable region quite well when it reaches steady state. It is expected that the established engineering model is valuable for the Quantitative risk assessment (QRA), initial emergency strategy preparation when a fuel gas leak accident happened in a Combined cycle power plant (CCPP). We hope it is also can be a kind of data base for power plant operation manual.

      더보기

      참고문헌 (Reference)

      1 J. Yu, "Visualization and analysis of the characteristics of transitional underexpanded jets" 44 : 140-154, 2013

      2 O. R. Hansen, "Valida tion of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion" 23 : 857-877, 2010

      3 E. Kim, "Simulation of hydrogen leak and explosion or the safety design of hydrogen fueling station in Korean" 38 : 1737-1743, 2013

      4 J. H. Juo, "Simplified expression for estimating release rate of hazardous gas from a hole on high-pressure pipelines" 19 : 362-366, 2006

      5 S. Dan, "Quantita-tive risk analysis of fire and explosion on the top-side LNG- liquefaction process of LNG-FPSO" 92 : 430-441, 2014

      6 A. L. Polyzakis, "Optimum gas turbine cycle for combined cycle power plane" 49 : 551-563, 2008

      7 Ki-Pyoung Kim, "On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship" 한국마린엔지니어링학회 35 (35): 946-956, 2011

      8 W. R. Hawthorne, "Mixing and combustion in turbulent gas jets" 3 : 266-288, 1948

      9 D. Yuhu, "Mathematical modeling of gas release through holes in pipelines" 92 : 237-241, 2003

      10 M. J. Assael, "Fires, explosion, and toxic gas dispersions: Effects calculation and risk analysis" CRC Press 2010

      1 J. Yu, "Visualization and analysis of the characteristics of transitional underexpanded jets" 44 : 140-154, 2013

      2 O. R. Hansen, "Valida tion of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion" 23 : 857-877, 2010

      3 E. Kim, "Simulation of hydrogen leak and explosion or the safety design of hydrogen fueling station in Korean" 38 : 1737-1743, 2013

      4 J. H. Juo, "Simplified expression for estimating release rate of hazardous gas from a hole on high-pressure pipelines" 19 : 362-366, 2006

      5 S. Dan, "Quantita-tive risk analysis of fire and explosion on the top-side LNG- liquefaction process of LNG-FPSO" 92 : 430-441, 2014

      6 A. L. Polyzakis, "Optimum gas turbine cycle for combined cycle power plane" 49 : 551-563, 2008

      7 Ki-Pyoung Kim, "On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship" 한국마린엔지니어링학회 35 (35): 946-956, 2011

      8 W. R. Hawthorne, "Mixing and combustion in turbulent gas jets" 3 : 266-288, 1948

      9 D. Yuhu, "Mathematical modeling of gas release through holes in pipelines" 92 : 237-241, 2003

      10 M. J. Assael, "Fires, explosion, and toxic gas dispersions: Effects calculation and risk analysis" CRC Press 2010

      11 ANSYS FLUENT Inc., "FLUENT 13.0 User’s Guide"

      12 D. Zhu, "Example of simulating analysis on LNG leakage and dispersion" 71 : 220-229, 2014

      13 G. Dong, "Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline : a computational parametric study" 23 : 522-530, 2010

      14 Kun Hyuk Sung, "Effect of crack size on gas leakage characteristics in a confined space" 대한기계학회 30 (30): 3411-3419, 2016

      15 E. Kim, "Development of Korean hydrogen fueling station codes through risk analysis" 56 : 13122-13131, 2011

      16 B. Sun, "Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies" 26 : 117-128, 2013

      17 I. Yet-Pole, "Applications of 3D QRA technique to the fire/explosion simulation and hazard mitigation within a naphtha-cracking plant" 22 : 506-515, 2009

      18 R. B. Cormier, "Application of computational fluid dynamics for LNG vapor dispersion modeling : A study of key parameters" 22 : 332-352, 2009

      19 Y. Zhao, "Analysis on the diffusion hazards of dynamic leakage of gas pipeline" 92 : 47-53, 2007

      20 A. Poulikas, "An overview and future sustainable gas turbine technologies" 9 : 409-443, 2009

      21 Y. Jo, "A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines" 97 : 31-46, 2003

      22 A. Luketa-Hanlin, "A review of large-scale LNG spills: Ex periments and modeling" 132 : 119-140, 2006

      23 Y. Jo, "A method of quantitative risk assessment for transmission pipeline carrying natural gas" 123 : 1-12, 2005

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼