RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Highly efficient in-line wet cyclone air sampler for airborne virus detection

      한글로보기

      https://www.riss.kr/link?id=A105079546

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Early detection of highly pathogenic strains is particularly important from the point of view of controlling and minimizing the spread of the virus. Wherein, the sampling of infectious virus from air is a crucial step for effective pandemic disease di...

      Early detection of highly pathogenic strains is particularly important from the point of view of controlling and minimizing the spread of the virus. Wherein, the sampling of infectious virus from air is a crucial step for effective pandemic disease diagnosis. However, most of the air samplers required long sampling time and real time virus analysis is not possible. Hence, the present work we report design and development of in-line virus detection system by adopting newly designed wet cyclone air sampler. An in line airborne virus detection system composed of preseparator and wet cyclone type impactor for air sampling, fluidics system, and virus sensing platform. All virus detection processes, such as sampling of air, hydration, delivery, and immunoassay were carried out on a single system without any preor post-sample treatment. Prior to virus detection, the collection efficiency @ 1000 L/min is tested with PSL particles and is observed that the air sampler efficiency for 1 µm AD is about 50 %, 1.5 µm AD is 78.3 %. And for the large size PSL the observed collection efficiency is about 100 %. Further, it is observed that, the developed system is capable of efficient collection of airborne viral pathogens such as H1N1 and H3N2.

      더보기

      참고문헌 (Reference)

      1 A. R. McFarland, "Wetted wall cyclones for bioaerosol sampling" 44 (44): 241-252, 2010

      2 R. S. Dungan, "Use of a culture-independent approach to characterize aerosolized bacteria near an open-freestall dairy operation" 41 : 8-14, 2012

      3 J. M. Blatny, "Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant" 42 (42): 7360-7367, 2008

      4 A. Hoisington, "The impact of sampler selection on characterizing the indoor microbiome" 80 : 274-282, 2014

      5 D. Sykes, "The development of a bioaerosol sampler for the detection of enzymes in industry" 2005

      6 D. Saini, "Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development" 63 (63): 143-149, 2011

      7 W. Xu, "Ru(phen)(3)(2+)doped silica nanoparticle based immunochromatographic strip for rapid quantitative detection of beta-agonist residues in swine urine" 114 (114): 160-166, 2013

      8 W. Peng, "Reverse-flow centrifugal separators in parallel:performance and flow pattern" 53 (53): 589-597, 2007

      9 V. Langer, "Rapid quantification of bioaerosols containing L. pneumophila by Coriolis μ air sampler and chemiluminescence antibody microarrays" 48 : 46-55, 2012

      10 J. Lum, "Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification" 38 (38): 67-73, 2012

      1 A. R. McFarland, "Wetted wall cyclones for bioaerosol sampling" 44 (44): 241-252, 2010

      2 R. S. Dungan, "Use of a culture-independent approach to characterize aerosolized bacteria near an open-freestall dairy operation" 41 : 8-14, 2012

      3 J. M. Blatny, "Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant" 42 (42): 7360-7367, 2008

      4 A. Hoisington, "The impact of sampler selection on characterizing the indoor microbiome" 80 : 274-282, 2014

      5 D. Sykes, "The development of a bioaerosol sampler for the detection of enzymes in industry" 2005

      6 D. Saini, "Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development" 63 (63): 143-149, 2011

      7 W. Xu, "Ru(phen)(3)(2+)doped silica nanoparticle based immunochromatographic strip for rapid quantitative detection of beta-agonist residues in swine urine" 114 (114): 160-166, 2013

      8 W. Peng, "Reverse-flow centrifugal separators in parallel:performance and flow pattern" 53 (53): 589-597, 2007

      9 V. Langer, "Rapid quantification of bioaerosols containing L. pneumophila by Coriolis μ air sampler and chemiluminescence antibody microarrays" 48 : 46-55, 2012

      10 J. Lum, "Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification" 38 (38): 67-73, 2012

      11 S. Bamrungsap, "Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles" 181 (181): 223-230, 2014

      12 B. K. Lavine, "Prediction of mold contamination from microbial volatile organic compound profiles using head space gas chromatography/mass spectrometry" 103 : 37-41, 2012

      13 F. Stripeli, "Performance of rapid influenza testing in hospitalized children" 29 (29): 683-688, 2010

      14 K. J. Jang, "Optical reading system for quantitative analysis of lateral flow assay (LFA) based immunological diagnostic kits" 2-12, 2014

      15 S. S. Hu, "Numerical performance simulation of a wetted wall bioaerosol sampling cyclone" 41 (41): 160-168, 2007

      16 J. A. Hubbard, "Liquid consumption of wetted wall bioaerosol sampling cyclones: Characterization and control" 45 (45): 172-182, 2011

      17 F. Zhang, "Lanthanide-labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp stewartii" 51 (51): 29-35, 2014

      18 Y. T. Kim, "Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus" 33 (33): 88-94, 2012

      19 L. Wen-Hai, "Influence of storage on the fungal concentration determination of impinger and filter samples" 64 (64): 102-107, 2003

      20 T. Mothilal, "Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger" 대한기계학회 29 (29): 4511-4520, 2015

      21 J. Macher, "Field evaluation of a personal, bioaerosol cyclone sampler" 5 (5): 724-734, 2008

      22 S. Marche, "Evaluation of rapid antigen detection kits for the diagnosis of highly pathogenic avian influenza H5N1 infection" 54 (54): 650-654, 2010

      23 M. E. Alexander, "Emergence of drug resistance : implications for antiviral control of pandemic influenza" 274 : 1675-1684, 2007

      24 P. Skladal, "Electrochemical immunosensor coupled to cyclone air sampler for detection of escherichia coli DH5 alpha in bioaerosols" 24 (24): 539-546, 2012

      25 C. W. Park, "Effects of condensational growth on culturability of airborne bacteria: implications for sampling and control of bioaerosols" 42 : 213-223, 2011

      26 W. Y. Zhang, "Direct, analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos" 114 (114): 261-267, 2013

      27 R. C. Spicer, "Differences in detection frequency as a bioaerosol data criterion for evaluating suspect fungal contamination" 45 (45): 1304-1311, 2010

      28 A. D. Tolchinsky, "Development of a personal bioaerosol sampler based on a conical cyclone with recirculating liquid film" 7 (7): 156-162, 2010

      29 M. Son, "Development of a novel aerosol impactor utilizing inward flow from a ring-shaped nozzle" 85 : 1-9, 2015

      30 B. Ngom, "Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review" 397 (397): 1113-1135, 2010

      31 N. Nagatani, "Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip" 137 : 3422-3426, 2012

      32 R. Persoons, "Critical working tasks and determinants of exposure to bioaerosols and MVOC at composting facilities" 213 (213): 338-347, 2010

      33 W. C. Hinds, "Aerosol technology: Properties, behavior, and measurement of airborne particles" Wiley 190-195, 1999

      34 W. Wu, "A lateral flow biosensor for the detection of human pluripotent stem cells" 436 (436): 160-164, 2013

      35 S. Zhen, "A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations" 40 (40): 503-513, 2009

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼