In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier--Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for boun...
In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier--Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.