RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Solution to Privacy Preservation in Publishing Human Trajectories = A Solution to Privacy Preservation in Publishing Human Trajectories

      한글로보기

      https://www.riss.kr/link?id=A107040156

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users’ privacy. Therefore, we st...

      With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users’ privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users’ behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users’ privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary’s background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users’ privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.

      더보기

      참고문헌 (Reference)

      1 A. Machanavajjhala, "l-diversity : Privacy beyond k-anonymity" 1 (1): 3-, 2007

      2 S. Gurung, "Traffic information publication with privacy preservation" 5 (5): 44-, 2014

      3 K. Zheng, "Towards efficient search for activity trajectories" IEEE 230-241, 2013

      4 Z. Tu, "Protecting trajectory from semantic attack considering k-anonymity, l-diversity, and t-closeness" 16 (16): 264-278, 2018

      5 Y. Xiao, "Protecting locations with differential privacy under temporal correlations" ACM 1298-1309, 2015

      6 B. Fung, "Privacy-preserving data publishing : A survey of recent developments" 42 (42): 14-, 2010

      7 P. R. M. Rao, "Privacy preservation techniques in big data analytics : a survey" 5 (5): 33-, 2018

      8 L. Xu, "Privacy or utility in data collection? a contract theoretic approach" 9 (9): 1256-1269, 2015

      9 H. Zhu, "Preserving privacy for sensitive values of individuals in data publishing based on a new additive noise approach" IEEE 1-6, 2014

      10 M. Gramaglia, "Preserving mobile subscriber privacy in open datasets of spatiotemporal trajectories" IEEE 1-9, 2017

      1 A. Machanavajjhala, "l-diversity : Privacy beyond k-anonymity" 1 (1): 3-, 2007

      2 S. Gurung, "Traffic information publication with privacy preservation" 5 (5): 44-, 2014

      3 K. Zheng, "Towards efficient search for activity trajectories" IEEE 230-241, 2013

      4 Z. Tu, "Protecting trajectory from semantic attack considering k-anonymity, l-diversity, and t-closeness" 16 (16): 264-278, 2018

      5 Y. Xiao, "Protecting locations with differential privacy under temporal correlations" ACM 1298-1309, 2015

      6 B. Fung, "Privacy-preserving data publishing : A survey of recent developments" 42 (42): 14-, 2010

      7 P. R. M. Rao, "Privacy preservation techniques in big data analytics : a survey" 5 (5): 33-, 2018

      8 L. Xu, "Privacy or utility in data collection? a contract theoretic approach" 9 (9): 1256-1269, 2015

      9 H. Zhu, "Preserving privacy for sensitive values of individuals in data publishing based on a new additive noise approach" IEEE 1-6, 2014

      10 M. Gramaglia, "Preserving mobile subscriber privacy in open datasets of spatiotemporal trajectories" IEEE 1-9, 2017

      11 H. Ghasemzadeh, "Power-aware activity monitoring using distributed wearable sensors" 44 (44): 537-544, 2014

      12 M. Gotz, "On user privacy in personalized mobile services" Cornell University 2012

      13 B. Agır, "On the privacy implications of location semantics" EPFL 2015

      14 A. Arasu, "On active learning of record matching packages" ACM 783-794, 2010

      15 Y. Dong, "Novel privacy-preserving algorithm based on frequent path for trajectory data publishing" 148 : 55-65, 2018

      16 M. Go¨tz, "Maskit : privately releasing user context streams for personalized mobile applications" ACM 289-300, 2012

      17 J. Wan, "Managing wandering risk in people with dementia" 45 (45): 819-823, 2015

      18 C. Song, "Limits of predictability in human mobility" 327 (327): 1018-1021, 2010

      19 D. M. Blei, "Latent dirichlet allocation" 3 : 993-1022, 2003

      20 R. Li, "K-anonymity model for privacy-preserving soccer fitness data publishing" 189 : 03007-, 2018

      21 A. Gruber, "Hidden topic markov models" 163-170, 2007

      22 R. Chen, "Differentially private transit data publication : a case study on the montreal transportation system" ACM 213-221, 2012

      23 Q. Miao, "Differential privacy-based location privacy enhancing in edge computing" 31 (31): e4735-, 2019

      24 D. Cynthia, "Differential privacy" 1-12, 2006

      25 S. Yu, "Big privacy : Challenges and opportunities of privacy study in the age of big data" 4 : 2751-2763, 2016

      26 S. Gao, "Balancing trajectory privacy and data utility using a personalized anonymization model" 38 : 125-134, 2014

      27 S. Li, "An efficient method for privacy-preserving trajectory data publishing based on data partitioning" 1-25, 2019

      28 B. Zhou, "Activity sequence-based indoor pedestrian localization using smartphones" 45 (45): 562-574, 2015

      29 A. Mannini, "Accelerometry-based classification of human activities using markov modeling" 2011 : 10-, 2011

      30 X. Li, "A scheme for activity trajectory dataset publishing with privacy preserved" IEEE 247-254, 2015

      31 K. Chatzikokolakis, "A predictive differentially-private mechanism for mobility traces" 21-41, 2014

      32 Y. Wang, "A fast privacy-preserving framework for continuous location-based queries in road networks" 53 : 57-73, 2015

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : KSII Transactions on Internet and Information Systems
      외국어명 : KSII Transactions on Internet and Information Systems
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.21 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.29 0.244 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼