RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Mobile Robot Localization based on Effective Combination of Vision and Range Sensors

      한글로보기

      https://www.riss.kr/link?id=A104905940

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Most localization algorithms are either range-based or vision-based, but the use of only one type of sensor cannot often ensure successful localization. This paper proposes a particle filter-based localization method that combines the range information obtained from a low-cost IR scanner with the SIFT-based visual information obtained from a monocular camera to robustly estimate the robot pose. The rough estimation of the robot pose by the range sensor can be compensated by the visual information given by the camera and the slow visual object recognition can be overcome by the frequent updates of the range information. Although the bandwidths of the two sensors are different, they can be synchronized by using the encoder information of the mobile robot. Therefore, all data from both sensors are used to estimate the robot pose without time delay and the samples used for estimating the robot pose converge faster than those from either range-based or vision-based localization. This paper also suggests a method for evaluating the state of localization based on the normalized probability of a vision sensor model. Various experiments show that the proposed algorithm can reliably estimate the robot pose in various indoor environments and can recover the robot pose upon incorrect localization.
      번역하기

      Most localization algorithms are either range-based or vision-based, but the use of only one type of sensor cannot often ensure successful localization. This paper proposes a particle filter-based localization method that combines the range informatio...

      Most localization algorithms are either range-based or vision-based, but the use of only one type of sensor cannot often ensure successful localization. This paper proposes a particle filter-based localization method that combines the range information obtained from a low-cost IR scanner with the SIFT-based visual information obtained from a monocular camera to robustly estimate the robot pose. The rough estimation of the robot pose by the range sensor can be compensated by the visual information given by the camera and the slow visual object recognition can be overcome by the frequent updates of the range information. Although the bandwidths of the two sensors are different, they can be synchronized by using the encoder information of the mobile robot. Therefore, all data from both sensors are used to estimate the robot pose without time delay and the samples used for estimating the robot pose converge faster than those from either range-based or vision-based localization. This paper also suggests a method for evaluating the state of localization based on the normalized probability of a vision sensor model. Various experiments show that the proposed algorithm can reliably estimate the robot pose in various indoor environments and can recover the robot pose upon incorrect localization.

      더보기

      참고문헌 (Reference)

      1 J. Kosecka, "Vision based topological Markov localization" 1481-1486, 2004

      2 S. Thimpson, "Stereo Vision and Sonar Sensor Based View Registration for 2.5 Dimensional Map Generation" 3444-3449, 2004

      3 Yong-Ju Lee, "SLAM of a Mobile Robot using Thinning-based Topological Information" 제어·로봇·시스템학회 5 (5): 577-583, 2007

      4 S. Thrun, "Robust Monte Carlo Localization for Mobile Robots" 128 (128): 99-141, 2001

      5 S. Thrun, "Probability Robotics" MIT Press 2005

      6 W. Shang, "Multi-sensory fusion for mobile robot self-localization" 871-876, 2006

      7 D. Fox, "Monte Carlo Localization: Efficient Position Estimation for Mobile Robots" 343-349, 1999

      8 D. G. Lowe, "Distinctive image features from scale invariant keypoints" 60 (60): 91-110, 2004

      9 A. Torralba, "Context-based vision system for place and object recognition" 273-280, 2003

      10 M. Alwan, "Characterization of Infrared Range-Finder PBS-03JN for 2-D Mapping" 3936-3941, 2004

      1 J. Kosecka, "Vision based topological Markov localization" 1481-1486, 2004

      2 S. Thimpson, "Stereo Vision and Sonar Sensor Based View Registration for 2.5 Dimensional Map Generation" 3444-3449, 2004

      3 Yong-Ju Lee, "SLAM of a Mobile Robot using Thinning-based Topological Information" 제어·로봇·시스템학회 5 (5): 577-583, 2007

      4 S. Thrun, "Robust Monte Carlo Localization for Mobile Robots" 128 (128): 99-141, 2001

      5 S. Thrun, "Probability Robotics" MIT Press 2005

      6 W. Shang, "Multi-sensory fusion for mobile robot self-localization" 871-876, 2006

      7 D. Fox, "Monte Carlo Localization: Efficient Position Estimation for Mobile Robots" 343-349, 1999

      8 D. G. Lowe, "Distinctive image features from scale invariant keypoints" 60 (60): 91-110, 2004

      9 A. Torralba, "Context-based vision system for place and object recognition" 273-280, 2003

      10 M. Alwan, "Characterization of Infrared Range-Finder PBS-03JN for 2-D Mapping" 3936-3941, 2004

      11 J. Gutmann, "A fast, accurate, and robust method for self-localization in polygonal environments using laser range finders" 14 (14): 651-668, 2001

      12 Xuan-Dao Nguyen, "A Simple Framework for Indoor Monocular SLAM" 제어·로봇·시스템학회 6 (6): 62-75, 2008

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼