RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향 = Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy

      한글로보기

      https://www.riss.kr/link?id=A106885881

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.
      번역하기

      Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%)...

      Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

      더보기

      참고문헌 (Reference)

      1 박경섭, "아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화" 한국주조공학회 37 (37): 108-114, 2017

      2 성효경, "베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향" 대한금속·재료학회 48 (48): 798-806, 2010

      3 O. Lashkari, "X-ray microtomographic characterization of porosity in aluminum alloy A356" 40 : 991-999, 2009

      4 H. R. Lashgari, "The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite" 517 : 170-179, 2009

      5 J. Pavlovic-Krstic, "The effect of mould temperature and cooling conditions on the size of secondary dendrite armspacing in Al-7Si-3Cu alloy" 15 (15): 105-113, 2009

      6 M. B. Djurdjevič, "The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys" 12 (12): 19-24, 2012

      7 J. Hirsch, "Superior light metals by texture engineering : Optimized aluminum and magnesium alloys for automotive applications" 61 (61): 818-843, 2013

      8 Q.-Z. Dong, "Prediction of mechanical properties of Al alloys with change of cooling rate" 9 (9): 381-386, 2012

      9 S. W. Choi, "Precipitation dependence of thermal properties for Al–Si–Mg–Cu–(Ti) alloy with various heat treatment" 647 : 1091-1097, 2015

      10 Z. Li, "Parameters controlling the performance of AA319-type alloys: Part I. Tensile properties" 367 : 96-110, 2004

      1 박경섭, "아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화" 한국주조공학회 37 (37): 108-114, 2017

      2 성효경, "베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향" 대한금속·재료학회 48 (48): 798-806, 2010

      3 O. Lashkari, "X-ray microtomographic characterization of porosity in aluminum alloy A356" 40 : 991-999, 2009

      4 H. R. Lashgari, "The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite" 517 : 170-179, 2009

      5 J. Pavlovic-Krstic, "The effect of mould temperature and cooling conditions on the size of secondary dendrite armspacing in Al-7Si-3Cu alloy" 15 (15): 105-113, 2009

      6 M. B. Djurdjevič, "The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys" 12 (12): 19-24, 2012

      7 J. Hirsch, "Superior light metals by texture engineering : Optimized aluminum and magnesium alloys for automotive applications" 61 (61): 818-843, 2013

      8 Q.-Z. Dong, "Prediction of mechanical properties of Al alloys with change of cooling rate" 9 (9): 381-386, 2012

      9 S. W. Choi, "Precipitation dependence of thermal properties for Al–Si–Mg–Cu–(Ti) alloy with various heat treatment" 647 : 1091-1097, 2015

      10 Z. Li, "Parameters controlling the performance of AA319-type alloys: Part I. Tensile properties" 367 : 96-110, 2004

      11 E. Ogris, "On the silicon spheroidization in Al-Si alloys" 2 (2): 263-269, 2002

      12 T. Wang, "Modeling of microporosity formation during solidification of aluminum alloys" 84 : 012046-, 2015

      13 V. C. Srivastava, "Microstructural modifications induced during spray deposition of Al–Si–Fe alloys and their mechanical properties" 471 (471): 38-49, 2007

      14 김영균, "Mg+A2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성" 한국소성가공학회 26 (26): 306-313, 2017

      15 M. F. Ibrahim, "Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys" 32 (32): 2130-2142, 2011

      16 S. G. Shabestari, "Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy" 39 : 2023-2032, 2004

      17 Y. J. Li, "Influence of Cu on the mechanical properties and precipitation behavior AlSi7Mg0.5 alloy during aging treatment" 54 (54): 99-103, 2006

      18 A. Tajiri, "Fatigue limit prediction of large scale cast aluminum alloy A356" 3 : 924-929, 2014

      19 A. K. Dahle, "Eutectic modification and microstructure development in Al–Si alloys" 413~414 : 243-248, 2005

      20 O. Engler, "Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA 6016" 639 : 65-74, 2015

      21 I. Aguilera-Luna, "Effect of cooling rate and Mg content on the Al–Si eutectic for Al–Si–Cu–Mg alloys" 95 : 211-218, 2014

      22 Z. Li, "Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al–Si–Cu 319 alloys" 38 : 1203-1218, 2003

      23 S. Derin, "Effect of Strontium Addition on Microstructure and Mechanical Properties of AlSi7Mg0.3 Alloy" 11 (11): 688-695, 2016

      24 함기수, "Effect of Heat Treatment on Tensile and Fatigue Deformation Behavior of Extruded Al-12 wt%Si Alloy" 대한금속·재료학회 23 (23): 35-42, 2017

      25 J. Z. Yi, "Effect of Fe-content of fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356-T6)" 386 (386): 396-407, 2004

      26 F. Grosselle, "Correlation between microstructure and mechanical properties of Al-Si cast alloys" 101 (101): 25-32, 2009

      27 M. Dehnavi, "Cooling Curve Analysis in Binary Al-Cu Alloys:Part I-Effect of Cooling Rate and Copper Content on the Eutectic Formation" 21 (21): 195-205, 2015

      28 L. Lu, "Combining Sr and Na addition in hypoeutectic Al–Si foundry alloys" 399 (399): 244-253, 2005

      29 H. Beumler, "Analysis of modified 319 aluminum alloy" 96 : 1-12, 1988

      30 P. Jimbert, "Analysis and comparative study of factors affecting quality in the hemming of 6016T4AA performed by means of electromagnetic forming and process characterization" 211 (211): 916-924, 2011

      31 J. R. Davis, "Alloying: Understanding the Basics" ASM International 351-416, 2001

      32 조재섭, "Al-Zn-Mg계 알루미늄 합금의 유동성에 미치는 합금원소의 영향" 한국주조공학회 32 (32): 127-132, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.22 0.22 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.2 0.478 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼