β-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical prop...
β-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified β-glucan. Alkali-treated β-glucan had a distinct shape and smaller particle size than untreated β-glucan. The reduced particle size was conducive to the stability of the suspension because the β-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of β-glucan, whereas exposure of macrophages to heat-treated β-glucan decreased their immune activity. β-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of β-glucan is a key factor in β-glucan-induced immune responses of macrophages. Thus, the modification of the β-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.