Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1%–2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantl...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A108463067
Young Cha (Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School) ; Kwang-Soo Kim (Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School)
2023
English
KCI등재,SCOPUS,SCIE
학술저널
22-41(20쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1%–2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantl...
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1%–2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Mask On, Mask Off: Subclinical Parkinson’s Disease Unveiled by COVID-19
Association of Depression With Early Occurrence of Postural Instability in Parkinson’s Disease