RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Strong unique continuation for hyperbolic operators.

      한글로보기

      https://www.riss.kr/link?id=T13398440

      • 저자
      • 발행사항

        [S.l.]: Purdue University 2013

      • 학위수여대학

        Purdue University Mathematics

      • 수여연도

        2013

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        71 p.

      • 지도교수/심사위원

        Adviser: Antonio Sa Barreto.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The topic of unique continuation is a topic of interest in many areas of mathematics. Perhaps the most well-known case is the one encountered in complex analysis. In general, it can be stated as follows: if Q is a differential operator in R n, u is a function verifying Qu = 0, and u vanishes to infinite order at a point x0, then u is identically 0 near x. There is a long history of strong unique continuation problems in the elliptic case, starting with the work of Aronszajn and Cordes. In this thesis, we study the hyperbolic case, namely the wave operator, with the Laplacian defined with respect to a certain metric in a Riemannian manifold. We write the Laplacian in the normal form, then we conjugate Q with the aid of a Gaussian, using a method of Tataru. Then we take advantage of an a priori estimate for the conjugate operator (which is the same as a Carleman estimate for Q) to get u = 0 near x, by using a technique of Hormander.
      번역하기

      The topic of unique continuation is a topic of interest in many areas of mathematics. Perhaps the most well-known case is the one encountered in complex analysis. In general, it can be stated as follows: if Q is a differential operator in R n, u is ...

      The topic of unique continuation is a topic of interest in many areas of mathematics. Perhaps the most well-known case is the one encountered in complex analysis. In general, it can be stated as follows: if Q is a differential operator in R n, u is a function verifying Qu = 0, and u vanishes to infinite order at a point x0, then u is identically 0 near x. There is a long history of strong unique continuation problems in the elliptic case, starting with the work of Aronszajn and Cordes. In this thesis, we study the hyperbolic case, namely the wave operator, with the Laplacian defined with respect to a certain metric in a Riemannian manifold. We write the Laplacian in the normal form, then we conjugate Q with the aid of a Gaussian, using a method of Tataru. Then we take advantage of an a priori estimate for the conjugate operator (which is the same as a Carleman estimate for Q) to get u = 0 near x, by using a technique of Hormander.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼