RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      H-coextension of the double four spiral semigroup Dsp4

      한글로보기

      https://www.riss.kr/link?id=A104869623

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In 1978, Byleen, Meakin and Pastijn[2,3] introduced the four - spiral semigroup Sp4 and the double four-spiral semigroup DSp4 and studied their semigroup Sp4 and studied their properties in detail. These regular semigroups play an important role in the theory of idempotent generated bismple but not completely simple semigroups. The semigroup A(1, 2) was introduced as a tool to analyse the structure of DSp4 [3]. In 2003, Chandrasekaran and Loganathan[7] observed that A(1, 2) has an inverse transveral which is a bicyclic monoid and applied this fact to represent DSp4 as a regular Rees matrix semigroup over A(1,2). This result is analogous to the representation due to Byleen [1] of the fundamental four spiral semigroup analogous to Reilly`s description of the bisimple-w-semigroups[21]. So it is natural to ask the following question. Determine the H-coextension of the R-unipotent semigroup A(1, 2) and then we describe the H-coextension of the double four spiral semigroup DSp4.
      번역하기

      In 1978, Byleen, Meakin and Pastijn[2,3] introduced the four - spiral semigroup Sp4 and the double four-spiral semigroup DSp4 and studied their semigroup Sp4 and studied their properties in detail. These regular semigroups play an important role in th...

      In 1978, Byleen, Meakin and Pastijn[2,3] introduced the four - spiral semigroup Sp4 and the double four-spiral semigroup DSp4 and studied their semigroup Sp4 and studied their properties in detail. These regular semigroups play an important role in the theory of idempotent generated bismple but not completely simple semigroups. The semigroup A(1, 2) was introduced as a tool to analyse the structure of DSp4 [3]. In 2003, Chandrasekaran and Loganathan[7] observed that A(1, 2) has an inverse transveral which is a bicyclic monoid and applied this fact to represent DSp4 as a regular Rees matrix semigroup over A(1,2). This result is analogous to the representation due to Byleen [1] of the fundamental four spiral semigroup analogous to Reilly`s description of the bisimple-w-semigroups[21]. So it is natural to ask the following question. Determine the H-coextension of the R-unipotent semigroup A(1, 2) and then we describe the H-coextension of the double four spiral semigroup DSp4.

      더보기

      참고문헌 (Reference)

      1 W.D.Munn, "The idempotent separating congruence on a regular 0-bisimple semigroup" 15 : 233-240, 1967

      2 K.Byleen, "The fundamental four-spiral semigroup, Simon Stevin" 54 : 6-26, 1978

      3 K.Byleen, "The double four-spiral semigroup" 54 : 75-105, 1980

      4 V.M.Chandrasekaran, "Structure of the Double Four-spiral Semigroup" 경북대학교 자연과학대학 수학과 43 (43): 503-512, 2003

      5 K.S.S.Nambooripad, "Structure of regular semigroups I" 22 (22): 1979

      6 K.Indhira, "Structure of regular semigroup with a regular idempotent" 6 (6): 557-570, 2011

      7 V.M.Chandrasekaran, "Structure of coextensions of regular semigroups by rectangular bands" 12 (12): 261-266, 2003

      8 J.Meakin, "Structure mapping coextension and regular four-spiral semigroups" 225 : 111-134, 1979

      9 V.M.Chandrasekaran, "Split map and idempotent separating congruence" 18 (18): 351-360, 2005

      10 T.E.Hall, "Some properties of local subsemigroups inherited by larger subsemigroups" 25 : 35-49, 1982

      1 W.D.Munn, "The idempotent separating congruence on a regular 0-bisimple semigroup" 15 : 233-240, 1967

      2 K.Byleen, "The fundamental four-spiral semigroup, Simon Stevin" 54 : 6-26, 1978

      3 K.Byleen, "The double four-spiral semigroup" 54 : 75-105, 1980

      4 V.M.Chandrasekaran, "Structure of the Double Four-spiral Semigroup" 경북대학교 자연과학대학 수학과 43 (43): 503-512, 2003

      5 K.S.S.Nambooripad, "Structure of regular semigroups I" 22 (22): 1979

      6 K.Indhira, "Structure of regular semigroup with a regular idempotent" 6 (6): 557-570, 2011

      7 V.M.Chandrasekaran, "Structure of coextensions of regular semigroups by rectangular bands" 12 (12): 261-266, 2003

      8 J.Meakin, "Structure mapping coextension and regular four-spiral semigroups" 225 : 111-134, 1979

      9 V.M.Chandrasekaran, "Split map and idempotent separating congruence" 18 (18): 351-360, 2005

      10 T.E.Hall, "Some properties of local subsemigroups inherited by larger subsemigroups" 25 : 35-49, 1982

      11 M.Loganathan, "Regular semigroups with a split map" 44 : 199-212, 1992

      12 M.Loganathan, "Regular semigroups with a medial idempotent" 36 : 69-74, 1987

      13 T.S.Blyth, "Regular semigroup with a multiplicative inverse transversal" 92A : 253-270, 1982

      14 K.Byleen, "Regular four-spiral semigroups, idempotent generated semigroups and the Rees Construction" 22 : 97-100, 1981

      15 K.Indhira, "Idempotent separating congruence on a regular semigroup with a regular idempotent" 7 (7): 107-114, 2013

      16 T.E.Hall, "Congruences and Green’s relations on regular semigroups" 13 : 167-175, 1972

      17 M.Loganathan, "Complementation and inner automorphism for regular semigroups" 21 : 195-204, 1980

      18 J.Meakin, "Coextensions of regular semigroups by rectangular bands I" 269 (269): 197-224, 1982

      19 Reilly, "Bisimple w-semigroups" 7 : 160-167, 1966

      20 J.M.Howie, "An introduction to semigroup theory" Academic press 1976

      21 K.Indhira, "A study on some special classes of regular semigroups" VIT University 2011

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2024 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2008-04-08 학회명변경 한글명 : 장전수리과학회 -> 장전수학회(章田數學會) KCI등재후보
      2008-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.16 0.16 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.27 0.609 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼