RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Visualization of Solid‐State Synthesis for Chalcogenide Na Superionic Conductors by in‐situ Neutron Diffraction

      한글로보기

      https://www.riss.kr/link?id=O136021777

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Chalcogenide superionic sodium (Na) conductors have great potential as solid electrolytes (SEs) in all‐solid‐state Na batteries with advantages of high energy density, safety, and cost effectiveness. The crystal structures and ionically conductive properties of solid Na‐ion conductors are strongly influenced by synthetic approaches and processing parameters. Thus, understanding the synthesis process is essential to control the structures and phases and to obtain Na‐ion conductors with desirable properties. Thanks to the high‐flux and deep‐penetrating time‐of‐flight neutron diffraction (ND), in‐situ experiments were able to track real‐time structural changes of two chalcogenide SEs (Na3SbS4 and Na3SbS3.5Se0.5) during the solid‐state synthesis. For these two conductors, the ND results revealed a fast one‐step reaction for the synthesis and the molten process when heating up, and the recrystallization as well as the cubic‐to‐tetragonal phase transition up on cooling. Moreover, Se‐doping was found to influence the reaction temperatures, lattice parameter, and structure stability based on neutron experimental observations and theoretical simulation. This work presents a detailed structural study using in‐situ ND technology for the solid synthesis process of chalcogenide Na‐ion conductors, beneficial for the design and synthesis of new solid‐state conductors.
      It's just a phase: The structural evolutions and phase changes of Na3SbS4 and Na3SbS3.5Se0.5 conductor are revealed by in‐situ neutron diffraction during their solid‐state synthesis, sintering, and cooling process. The Na3SbS4 phase forms directly from precursors through a rapid solid reaction around 300 °C and changes to a molten state beyond 590 °C. Se doping affects the solid reaction temperatures, unit cell size, and structural stability.
      번역하기

      Chalcogenide superionic sodium (Na) conductors have great potential as solid electrolytes (SEs) in all‐solid‐state Na batteries with advantages of high energy density, safety, and cost effectiveness. The crystal structures and ionically conductive...

      Chalcogenide superionic sodium (Na) conductors have great potential as solid electrolytes (SEs) in all‐solid‐state Na batteries with advantages of high energy density, safety, and cost effectiveness. The crystal structures and ionically conductive properties of solid Na‐ion conductors are strongly influenced by synthetic approaches and processing parameters. Thus, understanding the synthesis process is essential to control the structures and phases and to obtain Na‐ion conductors with desirable properties. Thanks to the high‐flux and deep‐penetrating time‐of‐flight neutron diffraction (ND), in‐situ experiments were able to track real‐time structural changes of two chalcogenide SEs (Na3SbS4 and Na3SbS3.5Se0.5) during the solid‐state synthesis. For these two conductors, the ND results revealed a fast one‐step reaction for the synthesis and the molten process when heating up, and the recrystallization as well as the cubic‐to‐tetragonal phase transition up on cooling. Moreover, Se‐doping was found to influence the reaction temperatures, lattice parameter, and structure stability based on neutron experimental observations and theoretical simulation. This work presents a detailed structural study using in‐situ ND technology for the solid synthesis process of chalcogenide Na‐ion conductors, beneficial for the design and synthesis of new solid‐state conductors.
      It's just a phase: The structural evolutions and phase changes of Na3SbS4 and Na3SbS3.5Se0.5 conductor are revealed by in‐situ neutron diffraction during their solid‐state synthesis, sintering, and cooling process. The Na3SbS4 phase forms directly from precursors through a rapid solid reaction around 300 °C and changes to a molten state beyond 590 °C. Se doping affects the solid reaction temperatures, unit cell size, and structural stability.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼