RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Optimization of the Smoothing Parameter of the Adaptive Kernel Estimator used in Bayes Classifier - Application to Microarray Data Analysis

      한글로보기

      https://www.riss.kr/link?id=A100505444

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this work, we focus on nonparametric kernel methods for estimating the probability density function (pdf). The convergence of a kernel estimator depends crucially on the choice of the smoothing parameter. We present in this paper, a new method for ...

      In this work, we focus on nonparametric kernel methods for estimating the probability density function (pdf). The convergence of a kernel estimator depends crucially on the choice of the smoothing parameter. We present in this paper, a new method for optimizing the bandwidth of an estimator of the probability density function: the adaptive kernel estimator. This optimized estimator is used to construct the Bayes classifier. In this sense, we have proposed a new approach to optimize the pdf based on the statistical properties of the probability distributions of random variables. We adopt the maximum entropy principle (MEP) in order to determine the optimal value of the smoothing parameter used in the estimator. In the proposed criterion, the estimated probability density function is called optimal in the sense of having a minimum error rate of classifying data. Finally, we illustrate the robustness of our optimization process of the kernel estimation methods by using a set of DNA microarray data showing that our approach effectively improves the performance of the classification process.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Kernel based Density Estimation
      • 2.1. K-nearest Neighbors Estimator
      • 2.2. Parzen-Rosenblatt estimator
      • Abstract
      • 1. Introduction
      • 2. Kernel based Density Estimation
      • 2.1. K-nearest Neighbors Estimator
      • 2.2. Parzen-Rosenblatt estimator
      • 2.3. Adaptive Kernel Estimator
      • 3. Bayes Classifier
      • 4. Gene Selection Algorithm
      • 4.1. Information Gain
      • 4.2. ReliefF
      • 4.3. Minimum Redundancy Maximum Relevance (mRMR)
      • 5. Optimization of the Smoothing Parameter of the Kernel Estimator
      • 5.1 Maximum Entropy Principle
      • 5.2 Criterion based on the Maximum Entropy Principle
      • 6. Experimental Results
      • 6.1. Description of the Data Sets
      • 6.2. Choice of Parameter k of Optimized Adaptive Kernel Estimator
      • 6.3. Validation Indices
      • 6.4. Experimental Results
      • 7. Conclusion
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼