Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve th...
Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve the NMF problem, but it fails to approach a stationary point and has inner iteration and zero divisor. So the elementwisely alternating projected gradient (eAPG) algorithm was proposed to overcome the defects. In this paper, we use the fact that the equilibrium point is stable to prove the convergence of the eAPG algorithm. By using a classic model, the equilibrium point is obtained and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the eAPG algorithm are obtained, which can accelerate the convergence. In addition, the conditions, which satisfy that the non-zero equilibrium point exists and is stable, can cause that the algorithm converges to different values. Both of them are confirmed in the experiments. And we give the mathematical proof that the eAPG algorithm can reach the appointed precision at the least iterations compared to the MU algorithm. Thus, we theoretically illustrate the advantages of the eAPG algorithm.