RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Hybrid Method for Phase-Height Relationship in 3D Shape Measurement using Fringe Pattern Projection

      한글로보기

      https://www.riss.kr/link?id=A104363298

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A height estimating function is proposed based on geometric analysis for a three-dimensional (3-D) measurement system using a digital light processing (DLP) projector and a camera. The proposed 3-D shape measurement method is a hybrid method that comb...

      A height estimating function is proposed based on geometric analysis for a three-dimensional (3-D) measurement system using a digital light processing (DLP) projector and a camera. The proposed 3-D shape measurement method is a hybrid method that combines the geometric parameter measuring method and the least squares method. This method uses the phase-to-height relationship for one line by plane analysis, and the related parameters are estimated using the least squares method. The proposed method has one function per image line instead of one function per image pixel. Sinusoidal fringe patterns of the projector are projected on the object, and the phase of the measuring point is calculated from the camera image. Then, the relationship between the phase by fringe patterns and the height of the measuring point is described as a parameter of the horizontal coordinate on the image plane. Thus, the 3-D shape of the object can be obtained. Our experiments show that the error of the modeling function is within ±0.1 mm when the x-z working range is 100×50 mm. Therefore, the proposed method can dramatically reduce the number of mapping functions needed for 3-D measurement using the geometric relationship between the projector and camera.

      더보기

      참고문헌 (Reference)

      1 Sansoni, G., "Three-Dimensional Vision based on a Combination of Gray-Code and Phase-Shift Light Projection : Analysis and Compensation of the Systematic Errors" 38 (38): 6565-6573, 1999

      2 Du, H, "Three-Dimensional Shape Measurement with an Arbitrarily Arranged Fringe Projection Profilometry System" 32 (32): 2438-2440, 2007

      3 Hu, Y., "Three-Dimensional Profilometry based on Shift Estimation of Projected Fringe Patterns" 45 (45): 678-687, 2006

      4 Baumbach, T., "Remote Metrology by Comparative Digital Holography" 45 (45): 925-934, 2006

      5 Ganotra, D., "Profilometry for the Measurement of Three-Dimensional Object Shape using Radial Basis Function, and Multi-Layer Perceptron Neural Networks" 209 (209): 291-301, 2002

      6 Choi, Y. B., "Phase-Shifting Grating Projection MoiréTopography" 37 (37): 1005-1010, 1998

      7 Chen, F., "Overview of Three-Dimensional Shape Measurement using Optical Methods" 39 (39): 10-22, 2000

      8 Huang, L., "Least-Squares Calibration Method for Fringe Projection Profilometry Considering Camera Lens Distortion" 49 (49): 1539-1548, 2010

      9 Guo, H., "Least-Squares Calibration Method for Fringe Projection Profilometry" 44 (44): 033603-, 2005

      10 Zhang, S., "Generic Nonsinusoidal Phase Error Correction for Three-Dimensional Shape Measurement using a Digital Video Projector" 46 (46): 36-43, 2007

      1 Sansoni, G., "Three-Dimensional Vision based on a Combination of Gray-Code and Phase-Shift Light Projection : Analysis and Compensation of the Systematic Errors" 38 (38): 6565-6573, 1999

      2 Du, H, "Three-Dimensional Shape Measurement with an Arbitrarily Arranged Fringe Projection Profilometry System" 32 (32): 2438-2440, 2007

      3 Hu, Y., "Three-Dimensional Profilometry based on Shift Estimation of Projected Fringe Patterns" 45 (45): 678-687, 2006

      4 Baumbach, T., "Remote Metrology by Comparative Digital Holography" 45 (45): 925-934, 2006

      5 Ganotra, D., "Profilometry for the Measurement of Three-Dimensional Object Shape using Radial Basis Function, and Multi-Layer Perceptron Neural Networks" 209 (209): 291-301, 2002

      6 Choi, Y. B., "Phase-Shifting Grating Projection MoiréTopography" 37 (37): 1005-1010, 1998

      7 Chen, F., "Overview of Three-Dimensional Shape Measurement using Optical Methods" 39 (39): 10-22, 2000

      8 Huang, L., "Least-Squares Calibration Method for Fringe Projection Profilometry Considering Camera Lens Distortion" 49 (49): 1539-1548, 2010

      9 Guo, H., "Least-Squares Calibration Method for Fringe Projection Profilometry" 44 (44): 033603-, 2005

      10 Zhang, S., "Generic Nonsinusoidal Phase Error Correction for Three-Dimensional Shape Measurement using a Digital Video Projector" 46 (46): 36-43, 2007

      11 Takeda, M., "Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shape" 22 (22): 3977-3982, 1983

      12 정병묵, "Flexible Vision Inspection for Seat Frame of Automobile using Slit Beam" 한국정밀공학회 12 (12): 605-612, 2011

      13 Da, F, "Flexible Three-Dimensional Measurement Technique based on a Digital Light Processing Projector" 47 (47): 377-385, 2008

      14 Maurel, A., "Experimental and Theoretical Inspection of the Phase-to-Height Relation in Fourier Transform Profilometry" 48 (48): 380-392, 2009

      15 Purcell, D., "Effective Wavelength Calibration for Moiré Fringe Projection" 45 (45): 8629-8635, 2006

      16 Liu, H., "Calibration-based Phase-Shifting Projected Fringe Profilometry for Accurate Absolute 3D Surface Profile Measurement" 216 (216): 65-80, 2003

      17 Hu, Q., "Calibration of a Three-Dimensional Shape Measurement System" 42 (42): 487-493, 2003

      18 Su, W., "A Large-Depth-of-Field Projected Fringe Profilometry using Super-Continuum Light Illumination" 13 (13): 1025-1032, 2005

      19 Tian, A., "A Flexible New Three-Dimensional Measurement Technique by Projected Fringe Pattern" 38 (38): 585-589, 2006

      20 Li, W., "3D Shape Measurement based on Structured Light Projection Applying Polynomial interpolation Technique" 124 (124): 20-27, 2013

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼