RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Resource Assessment of Polymetallic Nodules Using Acoustic Backscatter Intensity Data from the Korean Exploration Area, Northeastern Equatorial Pacific

      한글로보기

      https://www.riss.kr/link?id=A107470684

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A high level of confidence in resource data is a key prerequisite for conducting a reliable economic feasibility study in deep water seafloor mining. However, the acquisition of accurate resource data is difficult when employing traditional point-samp...

      A high level of confidence in resource data is a key prerequisite for conducting a reliable economic feasibility study in deep water seafloor mining. However, the acquisition of accurate resource data is difficult when employing traditional point-sampling methods to assess the resource potential of polymetallic nodules, given the vast size of the survey area and high spatial variability in nodule distribution. In this study, we analyzed high-resolution acoustic backscatter intensity images to estimate nodule abundance and increase confidence levels in nodule abundance data. We operated a 120 kHz deep-towed sidescan sonar (DSL-120) system (<TEX>$1{\times}1m$</TEX> resolution) across a <TEX>$75km^2$</TEX> representative area in the Korean Exploration Area for polymetallic nodules in the Northeastern Equatorial Pacific. A deep-towed camera system was also run along two tracks in the same area to estimate the abundance of polymetallic nodules on the seafloor. Backscatter data were classified into four facies based on intensity. The facies with the weakest and strongest backscatter intensities occurred in areas of high slope gradient and basement outcrops, respectively. The backscatter intensities of the two other facies correlated well with the nodule abundances estimated from still-camera images. A linear fit between backscatter intensity and mean nodule abundance for 10 zones in the study area yielded an excellent correlation (<TEX>$r^2=0.97$</TEX>). This allowed us to compile a map of polymetallic nodule abundance that shows greater resolution than a map derived from the extrapolation of point-sampling data. Our preliminary analyses indicate that it is possible to greatly increase the confidence level of nodule resource data if the relationship between backscatter intensity and nodule abundance is reliably established. This approach has another key advantage over point sampling and image analyses in that detailed maps of mining obstacles along the seafloor are produced when acquiring data on the abundance of polymetallic nodules. The key limitation of this work is a poor correlation between nodule coverage, as observed from photographs, and nodule abundance. Significant additional ground truth sampling using well located box cores should be completed to determine whether or not there is a real correlation between the backscatter and abundance.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼