RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical Evaluation of Compressive Strain Capacity for API X100 Line Pipe

      한글로보기

      https://www.riss.kr/link?id=A105480527

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the strain-based design, pipeline steels are required to satisfy not only the stress capacity but also the strain capacity. Thus,considerable efforts have been made to meet the various requirements of the pipe-material properties that might undergo largedeformation during the installation stage in various hostile environments. An adequate compressive strain capacity can helpeffectively avoid local buckling. Hence, highly deformable steel becomes crucial in achieving the required strain capacity. This studyproposes a nonlinear finite element procedure based on the commercial software ABAQUS combined with the User-definedMaterial Module (UMAT), which is created using Fortran language. The Gurson–Tvergaard–Needleman (GTN) model isimplemented in UMAT to fully consider the nonlinear behavior of an API X100 pipe subjected to compressive loading. Thenumerical simulation results of the full-scale bending test were compared with the experimental results to verify the nonlinear finiteelement procedure equipped with the GTN model. The simulation results are in good agreement with the experimental results. Theparametric studies reveal the effects of geometric imperfections and material properties on the compressive strain limit.
      번역하기

      In the strain-based design, pipeline steels are required to satisfy not only the stress capacity but also the strain capacity. Thus,considerable efforts have been made to meet the various requirements of the pipe-material properties that might undergo...

      In the strain-based design, pipeline steels are required to satisfy not only the stress capacity but also the strain capacity. Thus,considerable efforts have been made to meet the various requirements of the pipe-material properties that might undergo largedeformation during the installation stage in various hostile environments. An adequate compressive strain capacity can helpeffectively avoid local buckling. Hence, highly deformable steel becomes crucial in achieving the required strain capacity. This studyproposes a nonlinear finite element procedure based on the commercial software ABAQUS combined with the User-definedMaterial Module (UMAT), which is created using Fortran language. The Gurson–Tvergaard–Needleman (GTN) model isimplemented in UMAT to fully consider the nonlinear behavior of an API X100 pipe subjected to compressive loading. Thenumerical simulation results of the full-scale bending test were compared with the experimental results to verify the nonlinear finiteelement procedure equipped with the GTN model. The simulation results are in good agreement with the experimental results. Theparametric studies reveal the effects of geometric imperfections and material properties on the compressive strain limit.

      더보기

      참고문헌 (Reference)

      1 Taylor, N., "Submarine pipeline bucklingimperfection studies" 4 (4): 95-323, 1986

      2 Kan, W. C., "Strain-based pipelines: design consideration overview" 2008

      3 Liu, B., "Strain-based design criteria of pipelines" 22 (22): 884-888, 2009

      4 Tsuru, E., "Strain capacity of line pipe with yield point elongation" 2005

      5 Liessem, A., "Strain based design-What the contribution of a pipe manufacturer can be" 2007

      6 Aravas, N., "On the numerical integration of a class of pressuredependent plasticity models" 24 (24): 1395-1416, 1987

      7 Revie, R. W., "Oil and gas pipelines integrity and safety handbook" Wiley 2015

      8 Gresnigt, A. M., "Local buckling of UOE and seamless steel pipes" 2001

      9 Dorey, A. B., "Initial imperfection models for segments of line pipe" 128 (128): 322-329, 2006

      10 Tvergaard, V., "Influence of voids on shear band instabilities under plane strain conditions" 17 (17): 389-407, 1981

      1 Taylor, N., "Submarine pipeline bucklingimperfection studies" 4 (4): 95-323, 1986

      2 Kan, W. C., "Strain-based pipelines: design consideration overview" 2008

      3 Liu, B., "Strain-based design criteria of pipelines" 22 (22): 884-888, 2009

      4 Tsuru, E., "Strain capacity of line pipe with yield point elongation" 2005

      5 Liessem, A., "Strain based design-What the contribution of a pipe manufacturer can be" 2007

      6 Aravas, N., "On the numerical integration of a class of pressuredependent plasticity models" 24 (24): 1395-1416, 1987

      7 Revie, R. W., "Oil and gas pipelines integrity and safety handbook" Wiley 2015

      8 Gresnigt, A. M., "Local buckling of UOE and seamless steel pipes" 2001

      9 Dorey, A. B., "Initial imperfection models for segments of line pipe" 128 (128): 322-329, 2006

      10 Tvergaard, V., "Influence of voids on shear band instabilities under plane strain conditions" 17 (17): 389-407, 1981

      11 ASCE, "Guideline for the design of buried steel pipe" 2001

      12 Taylor, N., "Experimental and theoretical studies in subsea pipeline buckling" 9 (9): 211-257, 1996

      13 Shitamoto, H., "Evaluation of strain limit of compressive buckling by FE analysis" 2007

      14 Suzuki, N., "Effects of geometric imperfection on bending capacity of X80 linepipe" 2006

      15 Michael, T. C., "Effect of ovality and variable wall thickness on collapse loads in pipe bends subjected to in-plane bending closing moment" 79 : 138-148, 2012

      16 Nourpanah, N., "Development of a reference strain approach for assessment of fracture response of reeled pipelines" 77 (77): 2337-2353, 2010

      17 Suzuki, N., "Correlative hardening parameters to strain capacity of high strength linepipes" 2008

      18 Gurson, A. L., "Continuum theory of ductile rupture by void nucleation and growth: Part-1 Yield criteria and flow rules for porous ductile media" ASME 99 (99): 2-15, 1977

      19 Igi, S., "Compressive and tensile strain limit and integrity of X80 high strain pipelines" 2009

      20 Suzuki, N., "Compressive Strain Limits of X80 High-Strain Line Pipes" 2007

      21 Suzuki, N., "Compressive Strain Limits of High-Strength Linepipes" 2008

      22 Franklin, A. G., "Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions" 207 : 181-186, 1969

      23 Zimmerman, T., "Buckling resistance of large diameter spiral welded linepipe" 2004

      24 Aguirre, F., "Bending of steel tubes with Luders bands" 20 (20): 1199-1225, 2004

      25 Tvergaard, V., "Analysis of the cup-cone fracture in a round tensile bar" 32 (32): 157-169, 1984

      26 Guarracino, F., "Analysis of testing methods of pipelines for limit state design" 30 (30): 297-304, 2008

      27 Veerappan, A. R., "Analysis for flexibility in the ovality and thinning limits of pipe bends" 3 (3): 31-41, 2008

      28 Hibbitt, Karlson & Sorensen Inc., "ABAQUS Version 6.4 User's manual" 2005

      29 Nourpanah, N., "A design equation for evaluation of strain concentration factor in concrete coated X65 pipelines" 22 (22): 758-769, 2009

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-05-27 학술지명변경 한글명 : 대한토목학회 영문논문집 -> KSCE Journal of Civil Engineering KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.59 0.12 0.49
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.42 0.39 0.286 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼