RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Investigation of Single Point Incremental Sheet Forming Process: Extraction of Constitutive Models and Parameters Optimization

      한글로보기

      https://www.riss.kr/link?id=T15904330

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The incremental forming process (ISF) is one of the prominent sheet metal manufacturing techniques among the traditional forming methods; it’s becoming more noticeable these days due to its flexibility for manufacturing complex parts without utilizi...

      The incremental forming process (ISF) is one of the prominent sheet metal manufacturing techniques among the traditional forming methods; it’s becoming more noticeable these days due to its flexibility for manufacturing complex parts without utilizing predefined forming dies. Besides, the ISF process has higher formability of formed parts at a low cost than the conventional sheet forming methods. Additionally, the consistent and reasonable work material characterization in both room and warm temperature conditions under various strain rates is remarkably essential for modeling the numerical simulation and optimizing the sheet metal forming process working parameters. This research work’s contributions to the ISF process can be organized into the following sections: at first, the field emission scanning electron microscopy (FESEM) analysis combined with the energy-dispersive X-ray spectroscopy (EDS) technique is employed to conduct the elemental identification investigation. Secondly, the Digital Image Correlation (DIC) technique is used to investigate the work materials for assessing their material properties. For this purpose, the digital images at each deformation step, which provide complete displacement and strain data information until the fracture more accurately, are used. Further, the empirical models such as the original and modified Johnson-Cook models, modified Zerilli-Armstrong model, the strain-compensated Arrhenius-type constitutive equation, and hybrid machine learning model are proposed for describing the material flow behavior during hot deformation conditions. Overall, the proposed constitutive equation from the artificial neural network model combined with an optimization approach is proved to have good predictability in flow stress estimation. Eventually, the single incremental forming process (SPIF) is modeled using a customized vertical milling machine to investigate the SPIF process. The design of experiments (DOE) combined with the grey relational analysis (GRA), the response surface methodology (RSM), and statistical analysis of variance (ANOVA) is adopted for determining the process parameter's influence on the material formability without producing a rupture. The DOE procedure, a face-centered central composite design, is adopted for the AA3003-H18 Al alloy sheets for conducting the tests. The RSM procedure is used for optimizing the process parameters and identify the optimal experimental conditions. The statistically proposed model is observed from the outcome to be in good agreement with the experimental measurements. ANOVA is conducted to explain the proposed model's adequacy and the input factor's influence on the output factor. The statistically proposed regression model is observed to agree with the experimental estimations, having a higher R2 (0.8931) with lower prediction error (2.78%). The process parameters, such as step size, feed rate, the interaction effect of tool radius and step size, positively influence the response variable. Similarly, the input factors are optimized using the Taguchi method to minimize the surface roughness of formed parts. Firstly, according to the smaller-the-better, the S/N ratios are estimated to make a response table for getting the optimum level of process parameters. Minimum surface roughness is accomplished when the vertical step-size is smaller, the feed-rate is high, and the forming tool radius is high. The optimum level setting is acquired at 3.0 mm of forming tool radius (level 3), 3000 rpm of spindle speed (level 1), 0.10 mm of vertical step size (level 1), and 2000 mm/min of feed rate (level 4). The ANOVA results such as p-test and F--test revealed that vertical step-size, feed-rate, and tool radius significantly affect surface roughness. In contrast, the spindle speed is witnessed to have no significant influence on surface roughness. The Taguchi design results conferred better agreement with the actual measurements with moderate model error (approximately 1.8%). Additionally, the microstructural evaluation revealed that the thinning behavior tended to increase as forming depth reached its maximum; the material deformation was also observed to be uniform and homogeneous.

      더보기

      국문 초록 (Abstract)

      ISF(점진 성형 공정)는 기존의 성형 방법 중 대표적인 판금 제조 기법 중 하나다. 사전 정의된 성형 다이를 활용하지 않고 복잡한 부품을 제조할 수 있는 유연성으로 인해 오늘날 더욱 주목을 ...

      ISF(점진 성형 공정)는 기존의 성형 방법 중 대표적인 판금 제조 기법 중 하나다. 사전 정의된 성형 다이를 활용하지 않고 복잡한 부품을 제조할 수 있는 유연성으로 인해 오늘날 더욱 주목을 받고 있다. 게다가, ISF 공정은 기존의 시트 성형 방법보다 저렴한 비용으로 성형 부품의 성형성이 우수하다. 또한 다양한 변형률 하에서 실내 및 온열 온도 조건 모두에서 일관되고 합리적인 작업 재료 특성은 수치 시뮬레이션을 모델링하고 판금 성형 공정 작업 매개 변수를 최적화하는 데 매우 중요하다. 본 연구의 ISF 공정에 대한 기여는 처음에는 field emission scanning electron microscopy (FESEM) 분석과 에너지 분산 X선 스펙트럼 분석(EDS) 기법을 결합하여 소자 식별 조사를 실시하는 섹션으로 나눌 수 있다. 둘째, DIC (Digital Image Correlation) 기법을 사용하여 재료 특성을 평가하기 위한 작업 재료를 조사한다. 이를 위해 파단까지의 변위 및 변형 데이터 정보를 제공하는 각 변형 단계의 디지털 영상이 사용된다. 또한, 고온 변형 조건에서의 재료 흐름 거동을 설명하기 위해 최초 및 수정된 Johnson-Cook 모델, 수정된 Zerilli-Armstrong 모델, 변형률 보정 Arrhenius형 구성 방정식, 하이브리드 기계 학습 모델 등의 경험적 모델을 제안한다. 전반적으로, 인공신경망 모델의 제안 구성 방정식은 최적화 접근법과 결합된 흐름 응력 추정에 좋은 예측 가능성을 가지고 있는 것으로 입증되었다. 결국, 단일 점진 성형 공정(SPIF)은 SPIF 공정을 조사하기 위해 맞춤형 수직 밀링 머신을 사용하여 고안되었다. Grey relational analysis (GRA), response surface methodology (RSM), statistical analysis of variance (ANOVA)과 결합된 실험 설계(DOE)는 공정 매개변수가 파열을 일으키지 않는 상황에서 재료 성형성에 미치는 영향을 위해 채택되었다. 실험 실행을 위한 AA3003-H18 Al 합금 시트에 표면 중심의 중앙 합성 설계인 DOE 절차가 채택되었다. RSM 절차는 공정 변수를 최적화하고 최적의 실험 조건을 식별하는 데 사용된다. 통계적으로 제안된 모델은 실험 측정과 잘 일치하는 결과로부터 관찰된다. ANOVA 분석은 제안된 모형의 적합성과 입력 인자가 출력 인자에 미치는 영향을 설명하기 위해 수행된다. 통계적으로 제안된 회귀 모형은 더 높은 결정 계수(R2)(0.8931)와 더 낮은 예측 오차(2.78%)를 갖는 실험 추정과 일치하는 것으로 관찰된다. 스텝 크기, 이송 속도, 공구 반지름의 상호작용 효과, 스텝 크기와 같은 프로세스 파라미터는 반응 변수에 긍정적인 영향을 미친다. 마찬가지로 입력 계수는 Taguchi 방법을 사용하여 최적화되어 성형 부품의 표면 거칠기를 최소화한다. 첫째, 작을수록, S/N 비율은 프로세스 매개변수의 최적 수준을 얻기 위한 반응 표를 만드는 것으로 추정된다. 최소 표면 거칠기는 수직 스텝 크기가 작고 이송 속도가 높으며 성형 공구 반경이 높을 때 이루어진다. 최적의 레벨 설정은 성형 공구 반경 3.0mm (레벨 3), 스핀들 속도 3000rpm (레벨 1), 수직 스텝 크기 0.10mm (레벨 1), 이송 속도 2000mm/min (레벨 4)에서 획득한다. P-시험 및 F-시험 등의 분산 분석 결과에 따르면 수직 단계 크기, 공급 속도 및 공구 반경은 표면 거칠기에 상당한 영향을 미친다. 반면, 스핀들 속도는 표면 거칠기에 큰 영향을 미치지 않는 것으로 확인되었다. Taguchi 설계 결과는 중간 정도의 모형 오차(1.8%)를 갖는 실제 측정값과 더 잘 일치하는 결과를 얻었다. 또한 미세구조 평가 결과 형성 깊이가 최대에 도달하면 박리 거동이 증가하는 경향이 있었으며 재료 변형도 균일하고 균일한 것으로 관찰되었다.

      더보기

      목차 (Table of Contents)

      • 1 Single Point Incremental Forming Process 1
      • 1.1 Background 1
      • 1.1.1 Cold Incremental Forming Process 1
      • 1.1.2 Hot Incremental Forming Process 6
      • 1.2 Organization of the Dissertation 8
      • 1 Single Point Incremental Forming Process 1
      • 1.1 Background 1
      • 1.1.1 Cold Incremental Forming Process 1
      • 1.1.2 Hot Incremental Forming Process 6
      • 1.2 Organization of the Dissertation 8
      • 1.3 Toolpath Strategies 9
      • 1.4 Surface Quality 12
      • 1.5 Applications 13
      • 1.6 Effects of Process Parameters 14
      • 1.7 Process Modeling and Simulation 15
      • 1.8 Selection of Lubrication 16
      • 1.9 Material Characterization 21
      • 1.9.1 Material Test 21
      • 1.9.2 Uniaxial Tensile Test 22
      • 1.9.3 Measurements of Strain-hardening Models 25
      • 1.9.4 Plastic Anisotropy 26
      • 1.9.5 Hot Tensile Test of AISI-1045 Steel 29
      • 1.9.6 Microstructural Characterization 31
      • 1.10 Conclusions 34
      • 2 Johnson-Cook Material and Failure Models 35
      • 2.1 Summary 35
      • 2.2 Introduction 36
      • 2.3 Johnson-Cook Material Model 38
      • 2.3.1 Determination of Material Constants B and n 39
      • 2.3.2 Determination of Material Constant C 40
      • 2.3.3 Determination of the Material Constant, m 41
      • 2.4 Johnson-Cook Damage Model 44
      • 2.5 Discussion 48
      • 2.6 Conclusions 53
      • 3 Modified Johnson-Cook and Zerilli-Armstrong Models 55
      • 3.1 Summary 55
      • 3.2 Introduction 56
      • 3.3 Modified Johnson-Cook model 58
      • 3.3.1 Determination of constants A1, B1, B2 58
      • 3.3.2 Determination of constant C1 59
      • 3.3.3 Determination of constants λ1, λ2 60
      • 3.4 Modified Zerilli-Armstrong Model 61
      • 3.4.1 Determination of constants C2 and n 63
      • 3.4.2 Determination of constants C3 and C4 64
      • 3.4.3 Determination of constants C5 and C6 66
      • 3.5 Discussion 68
      • 3.6 Conclusions 74
      • 4 Arrhenius-Type Constitutive and Artificial Neural Network Models 77
      • 4.1 Summary 77
      • 4.2 Introduction 78
      • 4.3 Strain Compensated Constitutive Equation 81
      • 4.3.1 Arrhenius-Type Constitutive Equation 81
      • 4.3.2 Strain Compensation 84
      • 4.3.3 Constitutive Model Verification 85
      • 4.4 Artificial Neural Network Model 87
      • 4.4.1 Proposing Flow Stress Model using ANN-BP Algorithm 87
      • 4.4.2 Optimization Procedures for Obtaining the Best ANN-BP Model 90
      • 4.5 Conclusions 95
      • 5 SPIF Process Optimization using Response Surface Methodology 99
      • 5.1 Summary 99
      • 5.2 Introduction 100
      • 5.3 Experimental Procedures 101
      • 5.4 Design of Experiments 103
      • 5.5 Grey Relational Analysis 105
      • 5.6 Response Surface Methodology 110
      • 5.7 Results and Discussion 112
      • 5.8 Conclusions 122
      • 6 Taguchi Method in Optimization of Surface Roughness 125
      • 6.1 Summary 125
      • 6.2 Introduction 126
      • 6.3 Experimental Design using Taguchi method 127
      • 6.4 Microstructure Evaluation of AA5052-H32 material in SPIF Process . 132
      • 6.5 Microstructure Evaluation of AA3003-H18 material in SPIF Process . 135
      • 6.6 Conclusions 137
      • 7 Conclusions and Future Work 139
      • 7.1 Conclusions 139
      • 7.2 Suggestions for the Future Work 142
      • Bibliography 145
      더보기

      참고문헌 (Reference) 논문관계도

      1 Mirzadeh , H.A. Najafizadeh, "“ Flow stress prediction at hot working conditions ”", In : Materials Science and Engineering : A 527.4-5 , pp . 1160 ? 1164 . DOI : 10.1016/j.msea.2009.09.060, 2010

      2 Fan , Guoqiang et al, "“ Electric hot incremental forming : A novel technique ”", In : International Journal of Machine Tools and Manufacture 48.15 , pp . 1688 ? 1692 . DOI : 10.1016/j.ijmachtools.2008.07.010, 2008

      3 Ortiz , Mikel et al, "“ Hot Single Point Incremental Forming of Ti-6Al-4V Alloy ”", In : Key Engineering Materials 611-612 , pp . 1079 ? 1087 . DOI : 10.4028/www . scientific.net/kem.611-612.1079, 2014

      4 Amit Kumar, "“ Prediction of flow stress for hot deformation processing ”", In : Computational Materials Science 69 , pp . 350 ? 358 . DOI : 10.1016/j . commatsci.2012.11.054, 2013

      5 Slooff , F.A . et al, "“ Constitutive analysis of wrought magnesium alloy Mg ? Al4 ? Zn1", Scripta Materialia 57.8 , pp . 759 ? 762 . DOI : 10.1016/j.scriptamat.2007.06 . 023, 2007

      6 Ren , Huaqing et al, "“ In-situ springback compensation in incremental sheet forming ”", CIRP Annals 68.1 , pp . 317 ? 320 . DOI : 10.1016/j.cirp.2019.04.042, 2019

      7 Liu , Zhaobing, "“ Heat-assisted incremental sheet forming : a state-of-the-art review", 2018

      8 Memicoglu , P. , O . MusicC. Karadogan, "“ Simulation of incremental sheet forming using partial sheet models ”", In : Procedia Engineering 207 , pp . 831 ? 835 . DOI : 10.1016/j.proeng.2017.10.837, 2017

      9 Li , Changmin et al, "“ Hot Deformation Behavior and Constitutive Modeling of H13-Mod Steel ”", In : Metals 8.10 , p. 846 . DOI : 10.3390/met8100846, 2018

      10 WangY. H. et al, "“ Whole field sheet-metal tensile test using digital image correlation ”", In : Experimental Techniques 34.2 , pp . 54 ? 59 . DOI : 10.1111/j.1747- 1567.2009.00483.x, 2010

      1 Mirzadeh , H.A. Najafizadeh, "“ Flow stress prediction at hot working conditions ”", In : Materials Science and Engineering : A 527.4-5 , pp . 1160 ? 1164 . DOI : 10.1016/j.msea.2009.09.060, 2010

      2 Fan , Guoqiang et al, "“ Electric hot incremental forming : A novel technique ”", In : International Journal of Machine Tools and Manufacture 48.15 , pp . 1688 ? 1692 . DOI : 10.1016/j.ijmachtools.2008.07.010, 2008

      3 Ortiz , Mikel et al, "“ Hot Single Point Incremental Forming of Ti-6Al-4V Alloy ”", In : Key Engineering Materials 611-612 , pp . 1079 ? 1087 . DOI : 10.4028/www . scientific.net/kem.611-612.1079, 2014

      4 Amit Kumar, "“ Prediction of flow stress for hot deformation processing ”", In : Computational Materials Science 69 , pp . 350 ? 358 . DOI : 10.1016/j . commatsci.2012.11.054, 2013

      5 Slooff , F.A . et al, "“ Constitutive analysis of wrought magnesium alloy Mg ? Al4 ? Zn1", Scripta Materialia 57.8 , pp . 759 ? 762 . DOI : 10.1016/j.scriptamat.2007.06 . 023, 2007

      6 Ren , Huaqing et al, "“ In-situ springback compensation in incremental sheet forming ”", CIRP Annals 68.1 , pp . 317 ? 320 . DOI : 10.1016/j.cirp.2019.04.042, 2019

      7 Liu , Zhaobing, "“ Heat-assisted incremental sheet forming : a state-of-the-art review", 2018

      8 Memicoglu , P. , O . MusicC. Karadogan, "“ Simulation of incremental sheet forming using partial sheet models ”", In : Procedia Engineering 207 , pp . 831 ? 835 . DOI : 10.1016/j.proeng.2017.10.837, 2017

      9 Li , Changmin et al, "“ Hot Deformation Behavior and Constitutive Modeling of H13-Mod Steel ”", In : Metals 8.10 , p. 846 . DOI : 10.3390/met8100846, 2018

      10 WangY. H. et al, "“ Whole field sheet-metal tensile test using digital image correlation ”", In : Experimental Techniques 34.2 , pp . 54 ? 59 . DOI : 10.1111/j.1747- 1567.2009.00483.x, 2010

      11 Shrot , AviralMartin Baker, "“ Determination of Johnson ? Cook parameters from machining simulations ”", In : Computational Materials Science 52.1 , pp . 298 ? 304 . DOI : 10.1016/j.commatsci.2011.07.035, 2012

      12 MA , Ming long et al, "“ Establishment and application of flow stress models of Mg-Y-MM-Zr alloy ”", In : Transactions of Nonferrous Metals Society of China 21.4 , pp . 857 ? 862 . DOI : 10.1016/s1003-6326 ( 11 ) 60793-0, 2011

      13 Liang , ZhenglongQi Zhang, "“ Quasi-Static Loading Responses and Constitutive Modeling of Al ? Si ? Mg alloy", In : Metals 8.10 , p. 838 . DOI : 10.3390/ met8100838, 2018

      14 Song , QinbaoMartin Shepperd, "“ Predicting software project effort : A grey relational analysis based method ”", In : Expert Systems with Applications 38.6 , pp . 7302 ? 7316 . DOI : 10.1016/j.eswa.2010.12.005, 2011

      15 Rauch , Matthieu et al, "“ Tool path programming optimization for incremental sheet forming applications ”", In : Computer-Aided Design 41.12 , pp . 877 ? 885 . DOI : 10.1016/j.cad.2009.06.006, 2009

      16 L. Ben et al, "“ Effects of the tool path strategies on incremental sheet metal forming process ”", In : Mechanics & Industry 17.4 , p. 411 . DOI : 10.1051/ meca/2015094, 2016

      17 Saidi , Badreddine et al, "“ Experimental force measurements in single point incremental sheet forming SPIF ”", In : Mechanics & Industry 16.4 , p. 410 . DOI : 10.1051/meca/2015018, 2015

      18 Stendal , Johan et al, "“ Applying Machine Learning to the Phenomenological Flow Stress Modeling of TNM-B1 ”", In : Metals 9.2 , p. 220 . DOI : 10.3390/ met9020220, 2019

      19 GUO , La fengBao cheng LIZhi min ZHANG, "“ Constitutive relationship model of TC21 alloy based on artificial neural network ”", In : Transactions of Nonferrous Metals Society of China 23.6 , pp . 1761 ? 1765 . DOI : 10.1016/s1003- 6326 ( 13 ) 62658-8, 2013

      20 Kyunghoon , Lee et al, "“ A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods ”", In : Transactions of Materials Processing 26.1 , pp . 18 ? 27 . DOI : 10.5228/KSTP.2017.26.1.18, 2017

      21 Li , HongYing et al, "“ A modified Johnson Cook model for elevated temperature flow behavior of T24 steel ”", In : Materials Science and Engineering : A 577 , pp . 138 ? 146 . DOI : http : //dx.doi.org/10.1016/j.msea.2013.04.041, null

      22 Kirbach , C. et al, "“ Digital Image Correlation Used for Experimental Investigations of Al/Mg Compounds ”", In : Strain 51.3 , pp . 223 ? 234 . DOI : 10.1111/str . 12135, 2015

      23 Sbayti , Manel et al, "“ Finite Element Analysis of hot Single Point Incremental forming of hip prostheses ”", In : MATEC Web of Conferences 80 . Ed . by K. Saanouni , p. 14006 . DOI : 10.1051/matecconf/20168014006, 2016

      24 Oraon , ManishSoumen MandalVinay Sharma, "“ Investigation into the process parameter of single point incremental forming ( SPIF )", 2020

      25 Tonietto , Leandro et al, "“ New Method for Evaluating Surface Roughness Parameters Acquired by Laser Scanning ”", In : Scientific Reports 9.1 . DOI : 10.1038/ s41598-019-51545-7, 2019

      26 Razavi , S V et al, "“ Artificial neural networks for mechanical strength prediction of lightweight mortar ”", In : Scientific Research and Essays 6.16 , pp . 3406 ? 3417 . DOI : 10.5897/sre11.311, 2011

      27 Ren , Feng Zhang et al, "“ Constitutive Equation of Mg-3.5Zn-0.6Y-0.5Zr Alloy under Hot Compression Deformation ”", In : Advanced Materials Research 800 , pp . 271 ? 275 . DOI : 10.4028/www.scientific.net/amr.800.271, 2013

      28 Saidi , Badreddine et al, "“ Experimental and Numerical Study on Force Reduction in SPIF by Using Response Surface ”", In : pp . 835 ? 844 . DOI : 10.1007/978-3- 319-66697-6_81, 2017

      29 Ganesh , P. et al, "“ Optimization of pyramid shaped single point incremental forming of AA5052 alloy sheet ”", In : Materials Today : Proceedings 45 , pp . 5892 ? 5898 . DOI : 10.1016/j.matpr.2020.08.573, 2021

      30 SaidL. Ben et al, "“ Numerical prediction of the ductile damage in single point incremental forming process ”", International Journal of Mechanical Sciences 131-132 , pp . 546 ? 558 . DOI : 10.1016/j.ijmecsci.2017.08.026, 2017

      31 Krishnan , S.A. et al, "“ Prediction of high temperature flow stress in 9Cr ? 1Mo ferritic steel during hot compression", 2011

      32 Kuo , YiyoTaho YangGuan-Wei Huang, "“ The use of grey relational analysis in solving multiple attribute decision-making problems ”", In : Computers & Industrial Engineering 55.1 , pp . 80 ? 93 . DOI : 10.1016/j.cie.2007.12.002, 2008

      33 Zhang , Yan et al, "“ Avrami Kinetic-Based Constitutive Relationship for Armco- Type Pure Iron in Hot Deformation ”", In : Metals 9.3 , p. 365 . DOI : 10 . 3390 / met9030365, 2019

      34 Gatea , Shakir et al, "“ Modelling of ductile fracture in single point incremental forming using a modified GTN model ”", In : Engineering Fracture Mechanics 186 , pp . 59 ? 79 . DOI : 10.1016/j.engfracmech.2017.09.021, 2017

      35 Le VanNguyen Thanh Nam, "“ Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system ”", In : Proceedings of the Institution of Mechanical Engineers , Part B : Journal of Engineering Manufacture 227.8 , pp . 1099 ? 1110 . DOI : 10.1177/0954405413484014, 2013

      36 Singh , BhupinderJ.P. Misra, "“ Surface finish analysis of wire electric discharge machined specimens by RSM and ANN modeling ”", In : Measurement 137 , pp . 225 ? 237 . DOI : 10.1016/j.measurement.2019.01.044, 2019

      37 Liu , ZhaobingYanle LiPaul A. Meehan, "“ Tool path strategies and deformation analysis in multi-pass incremental sheet forming process ”", In : The International Journal of Advanced Manufacturing Technology 75.1-4 , pp . 395 ? 409 . DOI : 10.1007/s00170-014-6143-6, 2014

      38 LinY. C.Xiao Min ChenGe Liu, "“ ‘ A modified Johnson ? Cook model for tensile behaviors of typical high-strength alloy steel ’", In : Materials Science and Engineering A 527 , pp . 6980 ? 6986 . DOI : 10.1016/j.msea.2010.07.061, 2010

      39 Kumar , AjayVishal Gulati, "“ Experimental investigation and optimization of surface roughness in negative incremental forming ”", In : Measurement 131 , pp . 419 ? 430 . DOI : 10.1016/j.measurement.2018.08.078, 2019

      40 Sun , Mingyue et al, "“ Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels ”", Journal of Nuclear Materials 418.1-3 , pp . 269 ? 280 . DOI : 10.1016/j.jnucmat.2011.07.011, 2011

      41 Wang , PengZhouquan ZhuYonghu Wang, "“ A novel hybrid MCDM model combining the SAW , TOPSIS and GRA methods based on experimental design ”", 2016

      42 Pritam KumarR. Ganesh NarayananSatish V. Kailas, "“ Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds ”", In : Thin-Walled Structures 138 , pp . 415 ? 429 . DOI : 10.1016/j.tws . 2019.02.016, 2019

      43 Sajjad , MuhammadMohanraj MurugesanDongWon Jung, "“ Longitudinal Bow Estimation of U-Shape Profile in Cold Roll Formed for Commercial Aluminum Alloys ”", In : International Journal of Mechanical Engineering and Robotics Research , pp . 1097 ? 1103 . DOI : 10.18178/ijmerr.9.8.1097-1103, 2020

      44 Su , Yu et al, "“ Multi-Objective Optimization of Cutting Parameters in Turning AISI 304 Austenitic Stainless Steel ”", In : Metals 10.2 , p. 217 . DOI : 10.3390/ met10020217, 2020

      45 Vahdani , Mostafa et al, "“ Electric hot incremental sheet forming of Ti-6Al-4V titanium , AA6061 aluminum , and DC01 steel sheets", 2019

      46 Zhuang , Xincun et al, "“ Experimental Methodology for Obtaining the Flow Curve of Sheet Materials in aWide Range of Strains ”", In : steel research international 84.2 , pp . 146 ? 154 . DOI : 10.1002/srin.201200104, 2012

      47 Jawale , Kishore et al, "“ Microstructural investigation and lubrication study for single point incremental forming of copper ”", In : International Journal of Solids and Structures 151 , pp . 145 ? 151 . DOI : 10.1016/j.ijsolstr.2017.09.018, 2018

      48 Mohanraj , MurugesanKang Beom-SooLee Kyunghoon, "“ Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology ”", In : Composites Research 28.5 , pp . 297 ? 310 . DOI : 10.7234/composres . 2015.28.5.297, 2015

      49 Sivaiah , P.D. Chakradhar, "“ Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel ”", In : Measurement 134 , pp . 142 ? 152 . DOI : 10.1016/j.measurement.2018.10.067, 2019

      50 Salehi , M.M. SaadatmandJ. Aghazadeh Mohandesi, "“ Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing ”", In : Transactions of Nonferrous Metals Society of China 22.5 , pp . 1055 ? 1063 . DOI : 10.1016/s1003-6326 ( 11 ) 61283-1, 2012

      51 Jeon , Chi-Hoon et al, "“ Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing ”", In : International Journal of Precision Engineering and Manufacturing 15.6 , pp . 1235 ? 1239 . DOI : 10.1007/ s12541-014-0462-2, 2014

      52 RokniM. R. et al, "“ The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy ”", In : Journal of Materials Engineering and Performance 23.11 , pp . 4002 ? 4009 . DOI : 10.1007/s11665-014- 1195-1, 2014

      53 He , Jianli et al2018b, "“ A modified Johnson-Cook model for 10 % Cr steel at elevated temperatures and a wide range of strain rates ”", In : Materials Science and Engineering : A 715 , pp . 1 ? 9 . DOI : 10.1016/j.msea.2017.10.037, null

      54 Mandal , Sumantra et al, "“ Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel ”", In : Materials Science and Engineering : A 500.1-2 , pp . 114 ? 121 . DOI : 10.1016/j.msea.2008.09.019, 2009

      55 Hedayati , N.R. MadoliatR. Hashemi, "“ Strain measurement and determining coefficient of plastic anisotropy using digital image correlation ( DIC ) ”", In : Mechanics & Industry 18.3 , p. 311 . DOI : 10.1051/meca/2016060, 2017

      56 Zhang , Hongjian et al, "“ ‘ A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates ’ ”", In : Materials Science and Engineering A 527 ( 1-2 ) , pp . 328 ? 333 . DOI : 10.1016/j.msea.2009.08.008, 2009

      57 Graz˙yna , Mrwka-Nowotnik et al, "“ Microstructure and Properties of As-Cast and Heat-Treated 2017A Aluminium Alloy Obtained from Scrap Recycling ”", In : Materials 14.1 , p. 89 . DOI : 10.3390/ma14010089, 2020

      58 HouQing YuJing TaoWang, "“ ‘ A modified Johnson-Cook constitutive model for Mg ? Gd ? Y alloy extended to a wide range of temperatures ’", 2010

      59 Chuan , WangYu LeiZhang Jianguo, "“ Study on optimization of radiological worker allocation problem based on nonlinear programming functionfmincon ”", In : 2014 IEEE International Conference on Mechatronics and Automation . IEEE . DOI : 10.1109/icma.2014.6885847, 2014

      60 Lin , Y. C. et al, "“ ‘ Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the a+b regime ’ ”", In : Vacuum 157 , pp . 83 ? 91 . DOI : 10.1016/j.vacuum.2018.08.020, 2018

      61 Li , Huabing et al, "“ Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression ”", In : Metals 6.9 , p. 223 . DOI : 10.3390/met6090223, 2016

      62 Maqbool , FawadMarkus Bambach, "“ Dominant deformation mechanisms in single point incremental forming ( SPIF ) and their effect on geometrical accuracy", International Journal of Mechanical Sciences 136 , pp . 279 ? 292 . DOI : 10.1016/j.ijmecsci.2017.12.053, 2018

      63 Murugesan , MohanrajMuhammad SajjadDongWon Jung, "“ Hybrid Machine Learning Optimization Approach to Predict Hot Deformation Behavior of Medium Carbon Steel Material ”", In : Metals 9.12 , p. 1315 . DOI : 10 . 3390 / met9121315, null

      64 Gambirasio , LucaEgidio Rizzi, "“ On the calibration strategies of the Johnson ? Cook strength model : Discussion and applications to experimental data", 2014

      65 Murugesan , Mohanraj et al, "“ A Comparative Study of Ductile Damage Models Approaches for Joint Strength Prediction in Hot Shear Joining Process ”", In : Procedia Engineering 207 , pp . 1689 ? 1694 . DOI : 10.1016/j.proeng.2017.10 . 923, 2017

      66 Min , Junying et al, "“ Experimental and numerical investigation on incremental sheet forming with flexible die-support from metallic foam ”", In : Journal of Manufacturing Processes 31 , pp . 605 ? 612 . DOI : 10.1016/j.jmapro.2017.12.013, 2018

      67 Li , Huiping et al ., "“ Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson ? Cook model", null

      68 Honarpisheh , M.M. J. AbdolhoseiniS. Amini, "“ Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current ”", In : The International Journal of Advanced Manufacturing Technology 83.9-12 , pp . 2027 ? 2037 . DOI : 10.1007/s00170-015-7717-7, 2015

      69 Mohammad JavadMohsen Shamsari, "“ Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion", Journal of Materials Processing Technology 244pp . 17 ? 43 . DOI : 10.1016/j.jmatprotec.2017.01.029, 2017

      70 Lee , Chang-WhanDong-Yol Yang, "“ Study on the Formability of Magnesium Alloy Sheets in the Incremental Forming Process with External Heating Sources ”", In : International Journal of Precision Engineering and Manufacturing 21.8 , pp . 1519 ? 1527 . DOI : 10.1007/s12541-020-00352-6, 2020

      71 Mirone , G.D. Corallo, "“ A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening ”", In : International Journal of Plasticity 26.3 , pp . 348 ? 371 . DOI : 10.1016/j.ijplas.2009.07 . 006, 2010

      72 Fiorentino , A.C. GiardiniE. Ceretti, "“ Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement ”", In : Precision Engineering 39 , pp . 167 ? 172 . DOI : 10.1016/j.precisioneng . 2014.08.005, 2015

      73 LinY. C.Xiao Min Chen, "“ ‘ A critical review of experimental results and constitutive descriptions for metals and alloys in hot working ’ ”", In : Materials and Design 32 ( 4 ) , pp . 1733 ? 1759 . DOI : 10.1016/j.matdes.2010.11.048, 2011

      74 Tan , Jin Qiang et al, "“ ‘ A modified Johnson ? Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates ’ ”", In : Materials Science and Engineering A 631 , pp . 214 ? 219 . DOI : 10.1016/j.msea.2015.02.010, 2015

      75 GANChun lei et al, "“ Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain ”", 2014

      76 Jiang , Yu Qiang et al, "“ ‘ Isothermal tensile deformation behaviors and fracture mechanism of Ti-5Al-5Mo-5V-1Cr-1Fe alloy in b phase field ’ ”", In : Vacuum 156 , 187 ? ? 197 . DOI : 10.1016/j.vacuum.2018.08.020, 2018

      77 Murugesan , MohanrajDong Won Jung, "“ Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures ”", In : Heliyon 5.4 , e01347 . DOI : 10.1016/j.heliyon.2019.e01347, null

      78 Fa caiJun Chen, "“ Modeling Flow Stress of 70Cr3Mo Steel Used for Back-Up Roll During Hot Deformation Considering Strain Compensation ” . In :", Journal of Iron and Steel Research International 20.11 , pp . 118 ? 124 . DOI : 10.1016/ s1006-706x ( 13 ) 60206-x, 2013

      79 Zhu , Yanchun et al, "“ Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy ”", In : Computational Materials Science 50.5 , pp . 1785 ? 1790 . DOI : 10.1016/j.commatsci.2011 . 01.015, 2011

      80 Lei , Bingwang et al, "“ Constitutive Analysis on High-Temperature Flow Behavior of 3Cr-1Si-1Ni Ultra-High Strength Steel for Modeling of Flow Stress ”", In : Metals 9.1 , p. 42 . DOI : http : //dx.doi.org/10.3390/met9010042, 2019

      81 Murugesan , MohanrajDong Jung, "“ Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications ”", In : Materials 12.4 , p. 609 . DOI : 10.3390/ma12040609, null

      82 Li , Hong-Ying et al, "“ Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel ”", In : Materials & Design 35 , pp . 557 ? 562 . DOI : 10.1016/j.matdes.2011.08.049, 2012

      83 Raju , C.Neelkamal HaloiC. Sathiya Narayanan, "“ Strain distribution and failure mode in single point incremental forming ( SPIF ) of multiple commercially pure aluminum sheets ”", In : Journal of Manufacturing Processes 30 , pp . 328 ? 335 . DOI : 10.1016/j.jmapro.2017.09.033, 2017

      84 Mirzaie , TinaHamed MirzadehaJose Maria Cabrerab, "“ ‘ A simple Zerilli ? Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels ’ ”", 2016

      85 Wei , Hongyu et al, "“ Investigation on the influence of springback on precision of symmetric-cone-like parts in sheet metal incremental forming process ”", In : International Journal of Lightweight Materials and Manufacture 2.2 , pp . 140 ? 145 . DOI : 10.1016/j.ijlmm.2019.05.002, 2019

      86 Gambirasio , LucaEgidio Rizzi, "“ An enhanced Johnson ? Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow ”", In : Computational Materials Science 113 , pp . 231 ? 265 . DOI : 10.1016/ j.commatsci.2015.11.034, 2016

      87 Xiao , Xiao et al, "“ RSM and BPNN Modeling in Incremental Sheet Forming Process for AA5052 Sheet : Multi-Objective Optimization Using Genetic Algorithm ”", In : Metals 10.8 , p. 1003 . DOI : 10.3390/met10081003, 2020

      88 Hulas RajAnand Mukut Tigga, "“ An empirical evaluation and optimization of performance parameters of wire electrical discharge machining in cutting of Inconel 718 ”", In : Measurement 140 , pp . 185 ? 196 . DOI : 10.1016/j . measurement.2019.04.003, 2019

      89 Wang , Xiangyu et al, "“ ‘ Dynamic behavior and a modified Johnson ? Cook constitutive model of Inconel 718 at high strain rate and elevated temperature ’ ”", In : Materials Science and Engineering A 580 , pp . 385 ? 390 . DOI : 10.1016/j.msea . 2013.05.062, 2013

      90 Murugesan , Mohanraj, "“ Formability and Failure Evaluation of AA3003-H18 Sheets in Single- Point Incremental Forming Process through the Design of Experiments ”", In : Materials 14.4 , p. 808 . DOI : 10.3390/ma14040808, 2021

      91 Kumari , MinashreeSunil Kumar Gupta, "“ Removal of aromatic and hydrophobic fractions of natural organic matter ( NOM ) using surfactant modified magnetic nanoadsorbents ( MNPs )", 2018

      92 Maqbool , FawadMarkus Bambach, "“ Experimental and Numerical Investigation of the Influence of Process Parameters in Incremental Sheet Metal Forming on Residual Stresses ”", In : Journal of Manufacturing and Materials Processing 3.2 , p. 31 . DOI : 10.3390/jmmp3020031, 2019

      93 Miroslav et al, "“ Physical Modelling and Numerical Simulation of the Deep Drawing Process of a Box-Shaped Product Focused on Material Limits Determination ”", In : Metals 9.10 , p. 1058 . DOI : 10.3390/met9101058, 2019

      94 Song , Weidong et al, "“ ‘ A modified Johnson-Cook model for titanium matrix composites reinforced with titanium carbide particles at elevated temperatures ’ ”", In : Materials Science and Engineering A 576 , pp . 280 ? 289 . DOI : 10.1016/j.msea . 2013.04.014, 2013

      95 Zhanga , Y.J.C. OuteirobT. Mabroukic, "“ On the selection of Johnson- Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting ”", In : In Proceedings of the 15th CIRP Conference on Modelling of Machining Operations , pp . 112 ? 117, 2015

      96 Huang , ChangqingXiaodong JiaZhiwu Zhang, "“ A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy ”", In : Materials 11.5 , p. 855 . DOI : 10.3390/ma11050855, 2018

      97 DavarpanahMohammad Ali et al, "“ Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers ”", Journal of Materials Processing Technology 222 , pp . 287 ? 300 . DOI : 10.1016/j.jmatprotec.2015.03.014, 2015

      98 Lee , Jin-Hyuk et al, "“ Calculation of plastic strain ratio of AA1050 Al alloy sheet processed by heavy asymmetric rolling ? annealing followed by light rolling ? annealing", 2015

      99 Siamak , Serajzadeh, "“ ‘ Prediction of temperature distribution and required energy in hot forging process by coupling neural networks and finite element analysis ’ ”", In : Materials Letters61 ( 14-15 ) , pp . 3296 ? 3300 . DOI : 10.1016/j.matlet . 2006.11.056, 2007

      100 Yang , Li-Chih et al, "“ Constitutive Relationship Modeling and Characterization of Flow Behavior under Hot Working for Fe ? Cr ? Ni ? W ? Cu ? Co Super- Austenitic Stainless Steel", In : Metals 5.3 , pp . 1717 ? 1731 . DOI : http : //dx.doi . org/10.3390/met5031717, 2015

      101 Panda , AmlanaAshok Kumar SahooArun Kumar Rout, "“ Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis : A case study ”", pp . 581 ? 592 . DOI : 10.5267/j.dsl.2016.3.001, 2016

      102 Quan , Guo zheng et al, "“ Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti ? 6Al ? 2Zr ? 1Mo ? 1V alloy by artificial neural network", 2013

      103 Udroiu , Razvan, "Ion Braga , and Anisor Nedelcu“ Evaluating the Quality Surface Performance of Additive Manufacturing Systems : Methodology and a Material Jetting Case Study ”", In : Materials 12.6 , p. 995 . DOI : 10.3390/ma12060995, 2019

      104 HeDao Guang et al, "“ ‘ Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strainrates ’ ”", In : Materials and Design 154 , pp . 51 ? 62 . DOI : 10.1016/j.matdes.2018.05.022, null

      105 Chen , Yajun et al, "“ The Application of DIC Technique to Evaluate Residual Tensile Strength of Aluminum Alloy Plates with Multi-Site Damage of Collinear and Non-Collinear Cracks ”", In : Metals 9.2 , p. 118 . DOI : 10.3390/met9020118, 2019

      106 Ji , Guoliang et al, "“ A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel ”", In : Materials Science and Engineering : A 528.13- 14 , pp . 4774 ? 4782 . DOI : https : //doi.org/10.1016/j.msea.2011.03.017, 2011

      107 Peng , Wenwen et al, "“ Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models ”", In : Materials & Design 51 , pp . 95 ? 104 . DOI : 10.1016/j.matdes.2013.04.009, 2013

      108 Xiao , X. et al, "“ A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel ”", In : Computational Materials Science 62 , pp . 227 ? 234 . DOI : 10.1016/j.commatsci.2012.05.053, 2012

      109 PradhanDr. Mohan Kumar, "“ Multi-Objective Optimization of MRR , TWR and Radial Overcut of EDMed AISI D2 Tool Steel Using Response Surface Methodology , Grey Relational Analysis And Entropy Measurement", 2012

      110 Zhan , Hongyi et al, "“ Constitutive modelling of the flow behaviour of a titanium alloy at high strain rates and elevated temperatures using the Johnson ? Cook and modified Zerilli ? Armstrong models", 2014

      111 Han , Ying et al, "“ A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models ”", In : Computational Materials Science 67 , pp . 93 ? 103 . DOI : 10.1016/j.commatsci.2012.07.028, 2013

      112 He , An et al, "“ ‘ A comparative study on Johnson ? Cook , modified Johnson- Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel ’ ”", In : Materials and Design 52 , pp . 677 ? 685 . DOI : 10.1016/j.matdes.2013.06.010, 2013

      113 Chen , Dong-Dong et al, "“ ‘ Dislocation substructures evolution and an adaptivenetwork- based fuzzy inference system model for constitutive behavior of a Nibased superalloy during hot deformation ’ ”", In : Journal of Alloys and Compounds 708 , pp . 938 ? 946 . DOI : 10.1016/j.jallcom.2017.03.029, 2017

      114 Samantaray , D.S. MandalA.K . Bhaduri, "“ A comparative study on Johnson Cook , modified Zerilli ? Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr ? 1Mo steel", 2009

      115 Wu , Yuna et al, "“ Joint effect of micro-sized Si particles and nano-sized dispersoids on the flow behavior and dynamic recrystallization of near-eutectic Al ? Si based alloys during hot compression ”", In : Journal of Alloys and Compounds 856 , p. 158072 . DOI : 10.1016/j.jallcom.2020.158072, 2021

      116 LiHong Ying et al, "“ ‘ A comparative study on modified Johnson Cook , modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel ’ ”", In : Materials and Design 49 , pp . 493 ? 501 . DOI : 10.1016/j.matdes.2012.12.083, null

      117 P Umamaheswarrao, "“ Optimisation of hardness and tensile strength of friction stir welded AA6061 alloy using response surface methodology coupled with grey relational analysis and principle component analysis ”", International Journal of Engineering , Science and Technology 7.4 , p. 21 . DOI : 10.4314/ijest.v7i4.3, 2016

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼