콩 역병(Phytophthora root rot, PRR)은 난균(oomycete) 인 Phytophthora sojae에 의해 발생하는 콩의 주요 병 중하나로, 배수가 잘 안 되는 밭이나 습한 토양에서 심하게발생한다. 역병의 피해를 효과적으로 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A108925743
2023
Korean
KCI등재
학술저널
134-146(13쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
콩 역병(Phytophthora root rot, PRR)은 난균(oomycete) 인 Phytophthora sojae에 의해 발생하는 콩의 주요 병 중하나로, 배수가 잘 안 되는 밭이나 습한 토양에서 심하게발생한다. 역병의 피해를 효과적으로 ...
콩 역병(Phytophthora root rot, PRR)은 난균(oomycete) 인 Phytophthora sojae에 의해 발생하는 콩의 주요 병 중하나로, 배수가 잘 안 되는 밭이나 습한 토양에서 심하게발생한다. 역병의 피해를 효과적으로 줄일 수 있는 방법은주로 역병 저항성 품종을 재배하는 것으로, 이는 저항성 유전자 Rps (resistance to P. sojae)에 대한 연구를 중심으로 이루어진다. 본 연구는 대풍 과 천알(계통명 SS0404-T5-76) 을 교배하여 구축한 RIL (recombinant inbred line) 집단을이용하여 콩 역병 균주40468과 연관된 저항성 유전자좌를탐색하기 위해 수행되었다. 역병 균주40468에 대한 저항성평가는 하배축 접종(hypocotyl inoculation) 방법으로 이루어졌다. 저항성 검정 결과, 천알은 저항성,대풍은 감수성을보였고 집단 내에서는 계통들의 표현형이 분리되는 양상을보였다. 집단 내에서 표현형 분포는 1:1 (R:S) (χ2 = 0.57, p = 0.75) 분리비와 일치하였으며, 이는 저항성 반응이 단일 유전자에 의해 조절됨을 나타낸다. 대풍, 천알과 각 RIL 계통들은 고밀도 SNP 유전자형 분석을 통해 데이터를 얻었고, 이를 바탕으로 유전자 지도를 작성하였다. 일원분산분석(Single-marker ANOVA) 및 linkage analysis 결과, 18 번 염색체의 55.9~56.4 Mbp에서 높은 통계적 유의성을 보였으며, 이 지역의 표현형 분산은 ~98%로 나타났다. 탐색된영역은 다수의 선행연구에서 Rps의 위치로 보고된 지역과겹치며, 콩 표준 유전체 정보를 기반으로 0.5 Mbp 범위 내에서 leucine-rich repeat (LRR) 또는 serine/threonine kinase (STK)을 합성하는 유전자 9개를 포함하고 있다. 천알은 역병 균주40468에 대한 저항성 유전자좌가 밝혀진 첫 국내 콩품종으로, 본 연구에서 밝힌 천알의 저항성 유전자좌는 향후역병 저항성 육종 및 연구에서 유용한 재료가 될 것이다.
다국어 초록 (Multilingual Abstract)
Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae)....
Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.
참고문헌 (Reference)
1 장영은 ; 장익현 ; 강인정 ; 김지민 ; 강성택 ; 이성우, "콩 소청2호의 균주 특이적인 역병 저항성 유전자좌" 한국육종학회 52 (52): 398-407, 2020
2 Sahoo, D. K., "Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean" 11 : 2021
3 Koenning, S. R., "Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009" 11 : 5-, 2010
4 Van Wersch, S., "Stronger When Together:Clustering of plant NLR disease resistance genes" 24 : 688-699, 2019
5 Allen, T. W., "Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014" 18 : 19-27, 2017
6 Wrather, J., "Soybean disease loss estimates for the United States from 1996 to 1998" 23 : 122-131, 2001
7 Demirbas, A., "Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance" 41 : 1220-1227, 2001
8 Athow, K. L., "Rps6, a major gene for resistance to Phytophthora megasperma f. sp. glycinea in soybean" 72 : 1564-1567, 1982
9 Burnham, K., "Rps 8, a new locus in soybean for resistance to Phytophthora sojae" 43 : 101-105, 2003
10 Buzzell, R. I., "Research notes : another major gene for resistance to Phytophthora megasperma var. sojae in soybeans" 8 : 30-33, 1981
1 장영은 ; 장익현 ; 강인정 ; 김지민 ; 강성택 ; 이성우, "콩 소청2호의 균주 특이적인 역병 저항성 유전자좌" 한국육종학회 52 (52): 398-407, 2020
2 Sahoo, D. K., "Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean" 11 : 2021
3 Koenning, S. R., "Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009" 11 : 5-, 2010
4 Van Wersch, S., "Stronger When Together:Clustering of plant NLR disease resistance genes" 24 : 688-699, 2019
5 Allen, T. W., "Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014" 18 : 19-27, 2017
6 Wrather, J., "Soybean disease loss estimates for the United States from 1996 to 1998" 23 : 122-131, 2001
7 Demirbas, A., "Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance" 41 : 1220-1227, 2001
8 Athow, K. L., "Rps6, a major gene for resistance to Phytophthora megasperma f. sp. glycinea in soybean" 72 : 1564-1567, 1982
9 Burnham, K., "Rps 8, a new locus in soybean for resistance to Phytophthora sojae" 43 : 101-105, 2003
10 Buzzell, R. I., "Research notes : another major gene for resistance to Phytophthora megasperma var. sojae in soybeans" 8 : 30-33, 1981
11 Team, R. C., "R: A language and environment for statistical computing" R Foundation for Statistical Computing 2019
12 Meng, L., "QTL IciMapping:integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations" 3 : 269-283, 2015
13 Statistics Korea, "Pulse production. In: Crop production survey"
14 Jee, H., "Occurrence of Phytophthora root rot on soybean (Glycine max) and identification of the causal fungus" 40 : 16-22, 1998
15 Zhong, C., "Nextgeneration sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean" 131 : 525-538, 2017
16 Dorrance, A. E., "New sources of resistance to Phytophthora sojae in the soybean plant introductions" 84 : 1303-1308, 2000
17 Gordon, S., "Molecular marker analysis of soybean plant introductions with resistance to Phytophthora sojae" 97 : 113-118, 2007
18 Lin, F., "Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B" 126 : 2177-2185, 2013
19 하보근 ; 김문영 ; 반규정 ; 이석하 ; Eun-YoungHwang ; SunggiHeu, "Molecular Characterization of Hypernodulation in Soybean" 한국식물병리학회 19 (19): 24-29, 2003
20 Van, K., "Mining germplasm panels and phenotypic datasets to identify loci for resistance to Phytophthora sojae in soybean" 14 : e20063-, 2021
21 Weng, C., "Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7" 92 : 442-446, 2001
22 Zhao, X., "Loci and candidate gene identification for soybean resistance to Phytophthora root rot race 1 in combination with association and linkage mapping" 40 : 100-, 2020
23 Sugimoto, T., "Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean" 127 : 154-159, 2007
24 Shim, S., "Identification of QTLs for branching in soybean (Glycine max (L.) Merrill)" 213 : 225-, 2017
25 In Jeong Kang ; 강선주 ; Ik Hyun Jang ; Yunwoo Jang ; Hyung Kwon Shim ; 허성기 ; 이성우, "Identification of New Isolates of Phytophthora sojae and the Reactions of Korean Soybean Cultivars Following Hypocotyl Inoculation" 한국식물병리학회 35 (35): 698-704, 2019
26 Chen, L., "Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean" 134 : 3863-3872, 2021
27 Guo, N., "Genome-wide identification of Phytophthora sojae-associated microRNAs and network in a resistant and a susceptible soybean germplasm" 12 : 2922-, 2022
28 Li, W., "Genome-wide association study of partial resistance to P. sojae in wild soybeans from Heilongjiang province, China" 44 : 3194-3207, 2022
29 Rolling, W., "Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean [Glycine max (L.) Merr.]plant introductions" 15 : e0227710-, 2020
30 Li, Y., "Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean" 130 : 1223-1233, 2017
31 Sugimoto, T., "Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge" 182 : 133-, 2011
32 Sun, J., "Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]" 127 : 913-919, 2014
33 Yu, A., "Genetic analysis and SSR mapping of gene resistance to Phytophthora sojae race 1 in soybean cv Suinong 10" 32 : 462-466, 2010
34 장익현 ; 강인정 ; 김지민 ; 강성택 ; 장영은 ; 이성우, "Genetic Mapping of a Resistance Locus to Phytophthora sojae in the Korean Soybean Cultivar Daewon" 한국식물병리학회 36 (36): 591-599, 2020
35 Bates, D., "Fitting linear mixed-effects models using lme4" 67 : 1-48, 2015
36 Zhong, C., "Fine mapping, candidate gene identification and co-segregating marker development for the Phytophthora root rot resistance gene RpsYD25" 11 : 799-, 2020
37 Niu, J., "Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations" 8 : 538-, 2017
38 Jiang, B., "Fine mapping of a Phytophthoraresistance locus RpsGZ in soybean using genotyping-bysequencing" 21 : 2020
39 Cheng, Y., "Fine mapping of a Phytophthoraresistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing" 130 : 1041-1051, 2017
40 Tamborski, J., "Evolution of plant NLRs:From natural history to precise modifications" 71 : 355-378, 2020
41 Dorrance, A., "Evaluation of soybean differentials for their interaction with Phytophthora sojae" 5 : 9-, 2004
42 Wrather, J. A., "Estimates of disease effects on soybean yields in the United States 2003 to 2005" 38 : 173-, 2006
43 Wrather, J. A., "Effects of diseases on soybean yields in the United States 1996 to 2007" 10 : 24-, 2009
44 Sandhu, D., "Deletion of a disease resistance nucleotide-binding-site leucinerich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean" 168 : 2157-2167, 2004
45 Cai, G., "Comparative genomics approach to build a genome-wide database of high-quality, informative microsatellite markers: application on Phytophthora sojae, a soybean pathogen" 9 : 7969-, 2019
46 Morris, P. F., "Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones" 40 : 17-22, 1992
47 Sun, S., "Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae" 130 : 139-143, 2011
48 Sahoo, D. K., "A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes" 12 : e0169950-, 2017
49 Athow, K. L., "A new major gene for resistance to Phytophthora megasperma var. sojae in soybean" 70 : 977-980, 1980
50 Keum-Yong Park ; Jung-Kyung Moon ; Hong-Tae Yun ; Yeong-Ho Lee ; 김선림 ; Yong-Hwan Ryu ; 김용호 ; Ja-Hwan Ku ; 노재환 ; Eun-Sup Lee ; Keon-Soo Ha ; Ik-jae Kim ; Chang-Ki Son ; Soo-Kyeong Kim ; Seok-Dong Kim ; 문헌팔, "A New Soybean Cultivar for Fermented Soyfood and Tofu with High Yield “Daepung”" 한국육종학회 37 (37): 111-112, 2005
중국 단동 지역에서 국내 벼 품종의 출수 반응과 적응 출수생태 특성
대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화§
The Physicochemical Properties of Starch from Tongil-type Rice Varieties