We have developed a visible‐light‐mediated synthesis of 3‐arylsulfonylated thioflavones using an in situ‐activation strategy. The reaction proceeds through a one‐pot, three‐component pathway, without the need for sensitive or harsh reactio...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A108845223
2023
English
KCI등재,SCOPUS,SCIE
학술저널
921-925(5쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
We have developed a visible‐light‐mediated synthesis of 3‐arylsulfonylated thioflavones using an in situ‐activation strategy. The reaction proceeds through a one‐pot, three‐component pathway, without the need for sensitive or harsh reactio...
We have developed a visible‐light‐mediated synthesis of 3‐arylsulfonylated thioflavones using an in situ‐activation strategy. The reaction proceeds through a one‐pot, three‐component pathway, without the need for sensitive or harsh reaction conditions. Organic photocatalysts were employed to generate aryl radicals more efficiently from aryl diazonium salts generated in situ. This method enables the synthesis of 3‐arylsulfonylated thioflavones from aryl amines and methylthiolated alkynones, utilizing potassium metabisulfite as an inexpensive source of sulfur dioxide. The resulting products were obtained under mild reaction conditions. This approach provides an efficient alternative pathway for synthesizing thioflavone derivatives, which are prevalent among various bioactive compounds.
참고문헌 (Reference)
1 R. L. Lopez de Compadre, 30 : 900-, 1987
2 K. Tanaka, 22 : 5207-, 2020
3 M. Artico, 43 : 1886-, 2000
4 C. C. Chen, 17 : 736-, 2015
5 D. Joseph, 11 : 4169-, 2021
6 P. Prasit, 9 : 1773-, 1999
7 M. H. Holshouser, 24 : 853-, 1981
8 H. -K. Wang, 39 : 1975-, 1996
9 P. Nussbaumer, 45 : 4310-, 2002
10 J. Dong, 18 : 1714-, 2018
1 R. L. Lopez de Compadre, 30 : 900-, 1987
2 K. Tanaka, 22 : 5207-, 2020
3 M. Artico, 43 : 1886-, 2000
4 C. C. Chen, 17 : 736-, 2015
5 D. Joseph, 11 : 4169-, 2021
6 P. Prasit, 9 : 1773-, 1999
7 M. H. Holshouser, 24 : 853-, 1981
8 H. -K. Wang, 39 : 1975-, 1996
9 P. Nussbaumer, 45 : 4310-, 2002
10 J. Dong, 18 : 1714-, 2018
11 S. Sangeetha, 21 : 75-, 2019
12 X. Zheng, 2020 : 4534-, 2020
13 A. Nohara, 18 : 34-, 1975
14 T. Horie, 34 : 2169-, 1991
15 F. A. A. van Acker, 43 : 3752-, 2000
16 M. Pal, 70 : 7179-, 2005
17 Z. -W. Feng, 44 : 14786-, 2020
18 Y. -Q. Jiang, 362 : 2609-, 2020
19 D. M. D’Souza, 36 : 1095-, 2007
20 B. H. Rotstein, 114 : 8323-, 2014
21 R. O. Rocha, 5 : 972-, 2020
22 S. E. John, 8 : 4237-, 2021
23 V. S. Bhat, 364 : 3088-, 2022
24 E. J. Emmett, 4 : 602-, 2015
25 G. Qiu, 5 : 691-, 2018
26 B. Nguyen, 132 : 16372-, 2010
27 H. Woolven, 13 : 4876-, 2011
28 K. Hofman, 24 : 11852-, 2018
29 F. -S. He, 57 : 12603-, 2021
30 F. -S. He, 8 : 6119-, 2021
31 X. Wang, 8 : 3308-, 2021
32 J. A. Andrews, 54 : 1695-, 2022
33 Q. Li, 9 : 3781-, 2022
34 B. Qin, 9 : 3521-, 2022
35 M. Seyed Hashtroudi, 20 : 2149-, 2022
36 J. Zhang, 9 : 917-, 2022
37 S. Ye, 56 : 4145-, 2020
38 O. Fischer, 27 : 5417-, 2021
39 J. M. R. Narayanam, 40 : 102-, 2011
40 L. Shi, 41 : 7687-, 2012
41 J. W. Tucker, 77 : 1617-, 2012
42 C. K. Prier, 113 : 5322-, 2013
43 D. M. Schultz, 343 : 1239176-, 2014
44 S. Afewerki, 116 : 13512-, 2016
45 N. A. Romero, 116 : 10075-, 2016
46 K. L. Skubi, 116 : 10035-, 2016
47 B. König, 2017 : 1979-, 2017
48 C. -S. Wang, 118 : 7532-, 2018
49 P. Das, 17 : e202200085-, 2022
50 G. C. Upreti, 7 : 29728-, 2022
51 K. Fidaly, 14 : 1293-, 2012
52 A. Srivastava, 10 : 39495-, 2020
53 한순규, "“K-synthesis”: Recent advancements in natural product synthesis enabled by unique methods and strategies development in Korea" 대한화학회 44 (44): 172-201, 2023
Improvement of the metabolic stability of pan-RAF/VEGFR2 dual inhibitors
Predicting photoresist sensitivity using machine learning