RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

      한글로보기

      https://www.riss.kr/link?id=A108066442

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer—even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.
      번역하기

      There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased...

      There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer—even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

      더보기

      참고문헌 (Reference)

      1 T. J. Ragan, 62 : 413-, 2015

      2 K. Tunyasuvunakool, 596 : 590-, 2021

      3 T. Ikeya, 50 : 137-, 2011

      4 G. T. Montelione, 21 : 1563-, 2013

      5 A. Bhattacharya, 66 : 778-, 2007

      6 A. Zemla, (Suppl 3) : 22-, 1999

      7 J. Jumper, 596 : 583-, 2021

      8 A. Rosato, 20 : 227-, 2012

      9 C. D. Schwieters, 160 : 65-, 2003

      10 A. T. Brunger, 54 : 905-, 1998

      1 T. J. Ragan, 62 : 413-, 2015

      2 K. Tunyasuvunakool, 596 : 590-, 2021

      3 T. Ikeya, 50 : 137-, 2011

      4 G. T. Montelione, 21 : 1563-, 2013

      5 A. Bhattacharya, 66 : 778-, 2007

      6 A. Zemla, (Suppl 3) : 22-, 1999

      7 J. Jumper, 596 : 583-, 2021

      8 A. Rosato, 20 : 227-, 2012

      9 C. D. Schwieters, 160 : 65-, 2003

      10 A. T. Brunger, 54 : 905-, 1998

      11 P. Güntert, 273 : 283-, 1997

      12 N. Sekiyama, 52 : 339-, 2012

      13 J. -G. Jee, 285 : 15931-, 2010

      14 A. Ohno, 13 : 521-, 2005

      15 K. Fujiwara, 279 : 4760-, 2004

      16 K. Joo, 83 : 2251-, 2015

      17 R. Das, 77 : 363-, 2008

      18 Y. Shen, 12 : 747-, 2015

      19 O. F. Lange, 109 : 10873-, 2012

      20 S. Raman, 327 : 1014-, 2010

      21 Y. Shen, 105 : 4685-, 2008

      22 B. Mao, 136 : 1893-, 2014

      23 H. Park, 23 : 1123-, 2015

      24 S. Lindert, 11 : 1337-, 2015

      25 V. Mirjalili, 82 (82): 196-, 2014

      26 V. Mirjalili, 9 : 1294-, 2013

      27 S. Lindert, 9 : 3843-, 2013

      28 J. Chen, 67 : 922-, 2007

      29 R. Salomon-Ferrer, 9 : 3878-, 2013

      30 A. W. Gotz, 8 : 1542-, 2012

      31 D. A. Case,

      32 S. Le Grand, 184 : 374-, 2013

      33 D. K. Kirchner, 12 : 170-, 2011

      34 J. Xu, 26 : 889-, 2010

      35 Y. Zhang, 57 : 702-, 2004

      36 R. J. Read, 69 (69): 27-, 2007

      37 A. Zemla, (Suppl 5) : 13-, 2001

      38 지준구, "Unambiguous Determination of Intermolecular Hydrogen Bond of NMR Structure by Molecular Dynamics Refinement Using All-Atom Force Field and Implicit Solvent Model" 대한화학회 31 (31): 2717-2720, 2010

      39 지준구, "Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints" 대한화학회 35 (35): 1944-1950, 2014

      40 JunGoo Jee ; Hee-Chul Ahn, "Refinement of Protein NMR Structure under Membrane-like Environments with an Implicit Solvent Model" 대한화학회 30 (30): 1139-1142, 2009

      41 K. Wüthrich, "NMR of Proteins and Nucleic Acids" Wiley 1986

      42 지준구, "Letter to Editor: Accelerating atomistic refinement of NMR structures using Graphics Processing Unit" 한국자기공명학회 18 (18): 69-73, 2014

      43 지준구, "Effects of force fields for refining protein NMR structureswith atomistic force fields and generalized-Born implicit solvent model" 한국자기공명학회 18 (18): 24-29, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-03-12 학술지명변경 한글명 : Journal of the Korean Magnetic Resonance -> Journal of the Korean Magnetic Resonance Society
      외국어명 : Journal of the Korean Magnetic Resonance -> Journal of the Korean Magnetic Resonance Society
      KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.41 0.41 0.36
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.3 0.26 0.301 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼