RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      냉동고 작동오류 진단방법 개발 = 기계학습 알고리즘 비교를 중심으로

      한글로보기

      https://www.riss.kr/link?id=A105315490

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study aims to diagnose operation faults of freezer such as door left open by mistakes and refrigerant leaks by using machine learning approach. Machine learning algorithms can take training raw data and then output trained model that contains pre...

      This study aims to diagnose operation faults of freezer such as door left open by mistakes and refrigerant leaks by using machine learning approach. Machine learning algorithms can take training raw data and then output trained model that contains prediction rules. Active power of freezer, laboratory ambient temperature, and freezer inside surface temperature are selected as monitoring variables. Heat capacity, refrigerant mass, and door opening also varied upon actual operation scenarios. About 190,000 raw data were collected. We selected five machine learning algorithms: SVM, DT, KNN, ANN, and Naive Bayesian Classification. Kernel-based classification algorithms such as KNN and SVM were found to have better performance in diagnosing operation faults of freezer than other machine learning algorithms.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 연구배경 및 목적
      • 2. 원시데이터 취득
      • 3. 기계학습(Machine Learning)
      • 4. 토의
      • Abstract
      • 1. 연구배경 및 목적
      • 2. 원시데이터 취득
      • 3. 기계학습(Machine Learning)
      • 4. 토의
      • 5. 결론
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼