RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      베이지안 네트워크 모형을 활용한 스포츠 관람객의 친환경 행동 의도 인과구조 추론 = A Bayesian Network Approach to Infer Causality of Sports Spectators' Eco-Friendly Behavioral Intentions

      한글로보기

      https://www.riss.kr/link?id=A108926586

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      [목적] 본 연구의 목적은 스포츠 관람 중 친환경 행동 의도에 영향을 미치는 요인을 탐색하고 각 변수들이 친환경 행동 의도로 이어지는 인과구조를 추론하는 것이다.
      [방법] 총 364명의 18세 이상 성인 스포츠 팬을 대상으로 설문조사를 수행하여 기후변화에 대한 지식(Knowledge of Climate Change; KCC), 기후변화에 대한 인식(Awareness of Climate Change; ACC), 기후변화에 대한 태도(Attitude of Climate Change; ATT), 주관적 규범(Subjective Norm of Climate Change; SN), 지각된 행동 통제(Perceived Behavior Control of Climate Change), 스포츠 관람 중 일회용품 사용 감축 행동 의도(INT)를 수집한뒤, 확인적 요인분석을 수행하여 측정 결과의 타당성을 검증하였다. 측정 결과의 타당성이 검증된 자료를 바탕으로 잠재변인별 평균 점수를 변수로 재구성하여 인구통계학적 특성과 함께 베이지안 네트워크 학습을 진행하였다.
      [결과] 베이지안 네트워크 학습 결과 ACC, ATT, SN, PBC 변수는 모두 스포츠 관람 중 친환경 행동 의도(INT)에 직접적인 영향을 미치는 것으로 나타났으며, 그 과정에서 ATT와 SN은 ACC로부터 영향을 받고 ACC는 KCC와 성별(sex) 에 영향을 받는 것으로 나타났다. 반면, PBC는 INT에 영향을 미치지만 이외의 모든 입력변수들과는 연관성을 나타내지 않았다. 또한 본 연구에서 활용한 변수 중 스포츠 관람 중 친환경 행동 의도에 가장 큰 영향을 미치는 요인은 SN으로 나타났으며, 반대로 PBC의 영향력은 상대적으로 가장 낮은 것으로 나타났다.
      [결론] 본 연구의 결과는 그동안 체육·스포츠 분야에서 활발히 논의되지 못하였던 스포츠 팬의 친환경 행동 의도를 설명하기 위한 관계 구조를 자료 주도적 학습에 의해 추론하였다는 점에서 의의를 갖는다. 본 연구의 결과는 지속 가능한스포츠 유관기관들의 전략 수립, 의사결정 과정에서 의미 있는 기초자료로 활용될 수 있을 것이다.
      번역하기

      [목적] 본 연구의 목적은 스포츠 관람 중 친환경 행동 의도에 영향을 미치는 요인을 탐색하고 각 변수들이 친환경 행동 의도로 이어지는 인과구조를 추론하는 것이다. [방법] 총 364명의 18세 ...

      [목적] 본 연구의 목적은 스포츠 관람 중 친환경 행동 의도에 영향을 미치는 요인을 탐색하고 각 변수들이 친환경 행동 의도로 이어지는 인과구조를 추론하는 것이다.
      [방법] 총 364명의 18세 이상 성인 스포츠 팬을 대상으로 설문조사를 수행하여 기후변화에 대한 지식(Knowledge of Climate Change; KCC), 기후변화에 대한 인식(Awareness of Climate Change; ACC), 기후변화에 대한 태도(Attitude of Climate Change; ATT), 주관적 규범(Subjective Norm of Climate Change; SN), 지각된 행동 통제(Perceived Behavior Control of Climate Change), 스포츠 관람 중 일회용품 사용 감축 행동 의도(INT)를 수집한뒤, 확인적 요인분석을 수행하여 측정 결과의 타당성을 검증하였다. 측정 결과의 타당성이 검증된 자료를 바탕으로 잠재변인별 평균 점수를 변수로 재구성하여 인구통계학적 특성과 함께 베이지안 네트워크 학습을 진행하였다.
      [결과] 베이지안 네트워크 학습 결과 ACC, ATT, SN, PBC 변수는 모두 스포츠 관람 중 친환경 행동 의도(INT)에 직접적인 영향을 미치는 것으로 나타났으며, 그 과정에서 ATT와 SN은 ACC로부터 영향을 받고 ACC는 KCC와 성별(sex) 에 영향을 받는 것으로 나타났다. 반면, PBC는 INT에 영향을 미치지만 이외의 모든 입력변수들과는 연관성을 나타내지 않았다. 또한 본 연구에서 활용한 변수 중 스포츠 관람 중 친환경 행동 의도에 가장 큰 영향을 미치는 요인은 SN으로 나타났으며, 반대로 PBC의 영향력은 상대적으로 가장 낮은 것으로 나타났다.
      [결론] 본 연구의 결과는 그동안 체육·스포츠 분야에서 활발히 논의되지 못하였던 스포츠 팬의 친환경 행동 의도를 설명하기 위한 관계 구조를 자료 주도적 학습에 의해 추론하였다는 점에서 의의를 갖는다. 본 연구의 결과는 지속 가능한스포츠 유관기관들의 전략 수립, 의사결정 과정에서 의미 있는 기초자료로 활용될 수 있을 것이다.

      더보기

      다국어 초록 (Multilingual Abstract)

      PURPOSE This study explores the factors influencing eco-friendly behavioral intentions during sports spectating and infers the causal structure linking each variable to eco-friendly behavioral intentions. METHODS A total of 364 sports fans participated in the survey that collected data on Knowledge of Climate Change (KCC), Awareness of Climate Change (ACC), Attitude of Climate Change (ATT ), Subjective Norm of Climate Change (SN), Perceived Behavior Control of Climate Change (PBC), and Behavioral intention to Reduce Single-Use Plastic (INT ) during sports spectating.
      The validity of the measurement was examined through confirmatory factor analysis.
      Based on the validated data, latent variables’ average scores were reconstructed as input variables for the Bayesian Network, along with demographic characteristics.
      RESULTS The results of Bayesian network learning indicated that ACC, ATT, SN, and PBC variables directly influence INT. ACC affects ATT and SN, while ACC is influenced by KCC and sex. Conversely, PBC influenced INT but showed no association with the other input variables. SN was found to have the greatest impact on INT during sports spectating, while the influence of PBC was relatively low. CONCLUSIONS The causal structure inferred in the current study using Bayesian network learning provides insights into the previously underexplored relationship structure explaining eco-friendly behavioral intentions of sports fans in the field of sports science. The findings of this study can serve as empirical evidence for sports-related organizations to develop strategies and decision-making processes to promote sustainable sports spectatorship.
      번역하기

      PURPOSE This study explores the factors influencing eco-friendly behavioral intentions during sports spectating and infers the causal structure linking each variable to eco-friendly behavioral intentions. METHODS A total of 364 sports fans participate...

      PURPOSE This study explores the factors influencing eco-friendly behavioral intentions during sports spectating and infers the causal structure linking each variable to eco-friendly behavioral intentions. METHODS A total of 364 sports fans participated in the survey that collected data on Knowledge of Climate Change (KCC), Awareness of Climate Change (ACC), Attitude of Climate Change (ATT ), Subjective Norm of Climate Change (SN), Perceived Behavior Control of Climate Change (PBC), and Behavioral intention to Reduce Single-Use Plastic (INT ) during sports spectating.
      The validity of the measurement was examined through confirmatory factor analysis.
      Based on the validated data, latent variables’ average scores were reconstructed as input variables for the Bayesian Network, along with demographic characteristics.
      RESULTS The results of Bayesian network learning indicated that ACC, ATT, SN, and PBC variables directly influence INT. ACC affects ATT and SN, while ACC is influenced by KCC and sex. Conversely, PBC influenced INT but showed no association with the other input variables. SN was found to have the greatest impact on INT during sports spectating, while the influence of PBC was relatively low. CONCLUSIONS The causal structure inferred in the current study using Bayesian network learning provides insights into the previously underexplored relationship structure explaining eco-friendly behavioral intentions of sports fans in the field of sports science. The findings of this study can serve as empirical evidence for sports-related organizations to develop strategies and decision-making processes to promote sustainable sports spectatorship.

      더보기

      참고문헌 (Reference)

      1 Han, H., "Word-of-mouth, buying, and sacrifice intentions for eco-cruises : Exploring the function of norm activation and value-attitude-behavior" 70 : 430-443, 2019

      2 O’Connor, R. E., "Who wants to reduce greenhouse gas emissions?" 83 (83): 1-17, 2002

      3 Nordlund, A. M., "Value structures behind proenvironmental behavior" 34 (34): 740-756, 2002

      4 Brian H. Yim ; Kevin K. Byon, "Validation of the Sport Fan Model of Goal-Directed Behavior: Comparison to Theory of Reasoned Action, Theory of Planned Behavior, and Model of Goal-Directed Behavior" 글로벌지식마케팅경영학회 6 (6): 388-408, 2021

      5 Greaves, M., "Using the theory of planned behavior to explore environmental behavioral intentions in the workplace" 34 : 109-120, 2013

      6 Taylor, D., "Using Bayesian networks to track DNA movement through complex transfer scenarios" 42 : 69-80, 2019

      7 Martins, R., "Understanding spectator sustainable transportation intentions in international sport tourism events" 30 (30): 1972-1991, 2022

      8 Park, J., "Understanding consumer recycling behavior : Combining the theory of planned behavior and the norm activation model" 42 (42): 278-291, 2014

      9 Ajzen, I., "The theory of planned behavior" 50 (50): 179-211, 1991

      10 Ham, M., "The role of subjective norms in forming the intention to purchase green food" 28 (28): 738-748, 2015

      1 Han, H., "Word-of-mouth, buying, and sacrifice intentions for eco-cruises : Exploring the function of norm activation and value-attitude-behavior" 70 : 430-443, 2019

      2 O’Connor, R. E., "Who wants to reduce greenhouse gas emissions?" 83 (83): 1-17, 2002

      3 Nordlund, A. M., "Value structures behind proenvironmental behavior" 34 (34): 740-756, 2002

      4 Brian H. Yim ; Kevin K. Byon, "Validation of the Sport Fan Model of Goal-Directed Behavior: Comparison to Theory of Reasoned Action, Theory of Planned Behavior, and Model of Goal-Directed Behavior" 글로벌지식마케팅경영학회 6 (6): 388-408, 2021

      5 Greaves, M., "Using the theory of planned behavior to explore environmental behavioral intentions in the workplace" 34 : 109-120, 2013

      6 Taylor, D., "Using Bayesian networks to track DNA movement through complex transfer scenarios" 42 : 69-80, 2019

      7 Martins, R., "Understanding spectator sustainable transportation intentions in international sport tourism events" 30 (30): 1972-1991, 2022

      8 Park, J., "Understanding consumer recycling behavior : Combining the theory of planned behavior and the norm activation model" 42 (42): 278-291, 2014

      9 Ajzen, I., "The theory of planned behavior" 50 (50): 179-211, 1991

      10 Ham, M., "The role of subjective norms in forming the intention to purchase green food" 28 (28): 738-748, 2015

      11 Sweldens, S., "The role of awareness in attitude formation through evaluative conditioning" 18 (18): 187-209, 2014

      12 Zapata, O., "The relationship between climate conditions and consumption of bottled water : A potential link between climate change and plastic pollution" 187 : 107090-, 2021

      13 Tsamardinos, I., "The maxmin hill-climbing Bayesian network structure learning algorithm" 65 (65): 31-78, 2006

      14 Milfont, T. L., "The interplay between knowledge, perceived efficacy, and concern about global warming and climate change : A one-year longitudinal study" 32 (32): 1003-1020, 2012

      15 Brianne Suldovsky, "The Information Deficit Model and Climate Change Communication" Oxford University Press 2017

      16 Klandermans, B., "The Blackwell companion to social movements" Blackwell Publishing 360-379, 2004

      17 Kim, C. T., "Statistics for social sciences: With applications in R" Hakjisa 2019

      18 Inoue, Y., "Sport management and the natural environment: Theory and practice" Routledge 14-28, 2015

      19 Filo, K., "Sport and social media research : A review" 18 (18): 166-181, 2015

      20 Antil, J. H., "Socially responsible consumers : Profile and implications for public policy" 4 (4): 18-39, 1984

      21 Dawson, J., "Skier demand and behavioural adaptation to climate change in the US Northeast" 37 (37): 127-143, 2013

      22 Harland, P., "Situational and personality factors as direct or personal norm mediated predictors of pro-environmental behavior : Questions derived from normactivation theory" 29 (29): 323-334, 2007

      23 Trail, G. T., "Routledge handbook of sport and the environment" Routledge 134-148, 2018

      24 Zhang, Y., "Residents’ environmental conservation behaviors at tourist sites : Broadening the norm activation framework by adopting environment attachment" 8 (8): 571-, 2016

      25 McCullough, B. P., "Recycling intentions among youth baseball spectators" 10 (10): 104-120, 2011

      26 Palan, S., "Prolific. ac-A subject pool for online experiments" 17 : 22-27, 2018

      27 Masud, M. M., "Pro-environmental behavior and public understanding of climate change" 20 (20): 591-600, 2015

      28 Kline, R. B., "Principles and practice of structural equation modeling" The Guilford Press 2016

      29 Lee, T. M., "Predictors of public climate change awareness and risk perception around the world" 5 : 1014-1020, 2015

      30 Fishbein, M., "Predicting and changing behavior:The reasoned action approach" Psychology Press 2010

      31 Kellstedt, P. M., "Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States" 28 (28): 113-126, 2008

      32 Hair, J. F., "Multivariate data analysis: A global perspective" Pearson 2010

      33 De Groot, J. I. M., "Morality and prosocial behavior : The role of awareness, responsibility, and norms in the norm activation model" 149 (149): 425-449, 2009

      34 Kollmuss, A., "Mind the gap: Why do people act environmentally and what are the barriers to proenvironmental behavior?" 8 (8): 239-260, 2002

      35 Ryan, A. M., "Measuring “awareness of environmental consequences”: Two scales and two interpretations" Commonwealth Scientific and Industrial Research Organisation 2008

      36 Trail, G. T., "Marketing sustainability through sport : Testing the sport sustainability campaign evaluation model" 20 (20): 109-129, 2020

      37 Chen, Y. -C., "Learning discrete Bayesian networks from continuous data" 59 : 103-132, 2017

      38 Braksiek, M., "Intentions of environmentally friendly behavior among sports club members : An empirical test of the theory of planned behavior across genders and sports" 3 : 657183-, 2021

      39 Yilmaz, V., "Impact of knowledge, concern and awareness about global warming and global climatic change on environmental behavior" 22 (22): 6245-6260, 2020

      40 Meade, A. W., "Identifying careless responses in survey data" 17 (17): 437-455, 2012

      41 Stegmueller, D., "How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches" 57 (57): 748-761, 2013

      42 Adhitama, R. P., "Hill climbing algorithm for Bayesian network structure" 2479 (2479): 020035-, 2022

      43 McGuire, W. J., "Handbook of social psychology" Random House 233-246, 1985

      44 Zsóka, Á., "Greening due to environmental education? Environmental knowledge, attitudes, consumer behavior and everyday pro-environmental activities of Hungarian high school and university students" 48 : 126-138, 2013

      45 Emekci, S., "Green consumption behaviours of consumers within the scope of TPB" 36 (36): 410-417, 2019

      46 Akhtar, R., "Farmers’ perceptions, awareness, attitudes and adaption behaviour towards climate change" 23 (23): 246-262, 2018

      47 Van, L., "Factors of single use plastic reduction behavioral intention" 5 (5): 269-278, 2021

      48 Brymer, E., "Extreme sports as a precursor to environmental sustainability" 14 (14): 193-204, 2009

      49 Conner, M., "Extending the theory of planned behavior : A review and avenues for further research" 28 (28): 1429-1464, 1998

      50 Tommasetti, A., "Extended Theory of Planned Behavior(ETPB) : Investigating customers’perception of restaurants’ sustainability by testing a structural equation model" 10 (10): 2580-, 2018

      51 Gabarda-Mallorquí, A., "Exploring environmental awareness and behavior among guests at hotels that apply water-saving measures" 10 (10): 1305-, 2018

      52 Han, T. -I., "Explaining socially responsible consumer behavior : A meta-analytic review of theory of planned behavior" 29 (29): 91-103, 2017

      53 Chan, R. Y. K., "Explaining green purchasing behavior: A cross-cultural study on American and Chinese consumers" 14 (14): 9-40, 2002

      54 Brody, S. D., "Examining the relationship between physical vulnerability and public perceptions of global climate change in the United States" 40 (40): 72-95, 2008

      55 Alzubaidi, H., "Examining antecedents of consumers’ pro-environmental behaviours : TPB extended with materialism and innovativeness" 122 : 685-699, 2021

      56 Mallen, C., "Environmental sustainability in sport facility management : A Delphi study" 10 (10): 367-389, 2010

      57 Mohiuddin, M., "Environmental knowledge, awareness, and business school students’ intentions to purchase green vehicles in emerging countries" 10 (10): 1534-, 2018

      58 Bayard, B., "Environmental behavior structure and socio-economic conditions of hillside farmers: A multiple-group structural equation modeling approach" 62 (62): 433-440, 2007

      59 Ben-Gal, I., "Encyclopedia of statistics in quality and reliability" John Wiley & Sons 2008

      60 Halady, I. R., "Does awareness to climate change lead to behavioral change?" 2 (2): 6-22, 2010

      61 Hu, L., "Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives" 6 (6): 1-55, 1999

      62 Xu, X., "Consumer’s intention to purchase green furniture: Do health consciousness and environmental awareness matter?" 704 : 135275-, 2020

      63 Tobler, C., "Consumers’knowledge about climate change" 114 (114): 189-209, 2012

      64 Ajzen, I., "Constructing a theory of planned behavior questionnaire"

      65 Lindsey, I., "Conceptualising sustainability in sports development" 27 (27): 279-294, 2008

      66 Jürkenbeck, K., "Climate change awareness of the young generation and its impact on their diet" 3 : 100041-, 2021

      67 Baiardi, D., "Climate change awareness : Empirical evidence for the European Union" 96 : 105163-, 2021

      68 Arlt, D., "Climate change and media usage: Effects on problem awareness and behavioural intentions" 73 (73): 45-63, 2011

      69 Khatibi, F. S., "Can public awareness, knowledge and engagement improve climate change adaptation policies?" 2 : 18-, 2021

      70 Friedman, N., "Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks" 50 (50): 95-125, 2003

      71 Scutari, M., "Bayesian networks: With examples in R" CRC Press 2022

      72 Arora, P., "Bayesian networks for risk prediction using real-world data : A tool for precision medicine" 22 (22): 439-445, 2019

      73 Wagenmakers, E. -J., "Bayesian evaluation of informative hypotheses" Springer 181-207, 2008

      74 Han, H., "An investigation of green hotel customers’decision formation : Developing an extended model of the theory of planned behavior" 29 (29): 659-668, 2010

      75 Marcot, B. G., "Advances in Bayesian network modelling : Integration of modelling technologies" 111 : 386-393, 2019

      76 Ajzen, I., "Action control: From cognition to behavior" Springer 11-39, 1985

      77 Johnson, M. K., "A logistic regression analysis of factors affecting recycling behavior in apartment communities" 22 (22): 41-52, 1995

      78 Hanif, A., "A framework for fault diagnosis using continuous Bayesian network and causal inference" 1-8, 2021

      79 Chakraborty, S., "A Bayesian network-based customer satisfaction model : A tool for management decisions in railway transport" 3 : 4-, 2016

      80 UNEP (United Nations Environment Programme), "10ways the world of sport is tackling plastic pollution"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼