RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate

      한글로보기

      https://www.riss.kr/link?id=O119631337

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        2169-897X

      • Online ISSN

        2169-8996

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        6804-6821   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Atmospheric rivers (ARs) are narrow, long, transient, water vapor‐rich corridors of the atmosphere that are responsible for over 90% of the poleward water vapor transport in and across midlatitudes. However, the role of ARs in modulating extratropical and polar hydroclimate features (e.g., water vapor content and precipitation) has not been fully studied, even though moistening of the polar atmosphere is both a key result and amplifier of Arctic warming and sea ice melt, and precipitation is key to the surface mass balance of polar sea ice and ice sheets. This study uses the Modern‐Era Retrospective analysis for Research and Applications, Version 2 reanalysis to characterize the roles of AR water vapor transport on the column‐integrated atmospheric water vapor budget in the extratropical and polar regions of both hemispheres. Meridional water vapor transport by ARs across a given latitude (examined for 40°, 50°, 60°, and 70°) is strongly related to variations in area‐averaged (i.e., over the cap poleward of the given latitude) total water vapor storage and precipitation poleward of that latitude. For the climatological annual cycle, both AR transport (i.e., nonlocal sources) and total evaporation (i.e., local sources) are most correlated with total precipitation, although with slightly different phases. However, for monthly anomalies, the water budget at higher latitudes is largely dominated by the relationship between AR transport and precipitation. For pentad and daily anomalies, AR transport is related to both precipitation and water vapor storage variations. These results demonstrate the important role of episodic, extreme water vapor transports by ARs in modulating extratropical and polar hydroclimate.
      The term atmospheric river (AR) was coined by scientists Zhu and Newell in the early 1990s with the main result highlighting the importance of relatively infrequent, long conduits of strong moisture transport being responsible for most of the poleward transport of moisture across the midlatitudes and into the polar regions. While it is generally understood that this moisture is critical to the water and energy budgets of high latitudes, there have been no studies that have ever quantified the relationship between AR poleward moisture transports and the hydroclimate features of high latitudes. After a long hiatus in the consideration of the role of ARs on global climate since those of Zhu and Newell, this study quantifies the connections between water vapor transport by ARs across specific latitudes (e.g., 40°) and the hydroclimate poleward of this latitude. The findings show there are strong, time scale‐dependent (e.g., daily and monthly) connections between ARs and high‐latitude hydroclimate features. For example, the findings show a strong relationship between AR water vapor transport at a given latitude and the area‐averaged total precipitation of the region poleward. This and other results in this study indicate the importance of ARs in shaping our global weather and climate.


      Few studies since the data‐limited Zhu and Newell (1994, https://doi.org/10.1029/94GL01710; 1998, https://doi.org/10.1175/1520‐0493) studies have quantified the links between ARs and global climate features
      Using MERRA2, this study shows strong, time scale sensitive links between AR water vapor transport and extratropical/polar hydroclimate
      Evident is a strong relationship between AR water vapor transport across a latitude and area‐mean extratropical precipitation variation
      번역하기

      Atmospheric rivers (ARs) are narrow, long, transient, water vapor‐rich corridors of the atmosphere that are responsible for over 90% of the poleward water vapor transport in and across midlatitudes. However, the role of ARs in modulating extratropic...

      Atmospheric rivers (ARs) are narrow, long, transient, water vapor‐rich corridors of the atmosphere that are responsible for over 90% of the poleward water vapor transport in and across midlatitudes. However, the role of ARs in modulating extratropical and polar hydroclimate features (e.g., water vapor content and precipitation) has not been fully studied, even though moistening of the polar atmosphere is both a key result and amplifier of Arctic warming and sea ice melt, and precipitation is key to the surface mass balance of polar sea ice and ice sheets. This study uses the Modern‐Era Retrospective analysis for Research and Applications, Version 2 reanalysis to characterize the roles of AR water vapor transport on the column‐integrated atmospheric water vapor budget in the extratropical and polar regions of both hemispheres. Meridional water vapor transport by ARs across a given latitude (examined for 40°, 50°, 60°, and 70°) is strongly related to variations in area‐averaged (i.e., over the cap poleward of the given latitude) total water vapor storage and precipitation poleward of that latitude. For the climatological annual cycle, both AR transport (i.e., nonlocal sources) and total evaporation (i.e., local sources) are most correlated with total precipitation, although with slightly different phases. However, for monthly anomalies, the water budget at higher latitudes is largely dominated by the relationship between AR transport and precipitation. For pentad and daily anomalies, AR transport is related to both precipitation and water vapor storage variations. These results demonstrate the important role of episodic, extreme water vapor transports by ARs in modulating extratropical and polar hydroclimate.
      The term atmospheric river (AR) was coined by scientists Zhu and Newell in the early 1990s with the main result highlighting the importance of relatively infrequent, long conduits of strong moisture transport being responsible for most of the poleward transport of moisture across the midlatitudes and into the polar regions. While it is generally understood that this moisture is critical to the water and energy budgets of high latitudes, there have been no studies that have ever quantified the relationship between AR poleward moisture transports and the hydroclimate features of high latitudes. After a long hiatus in the consideration of the role of ARs on global climate since those of Zhu and Newell, this study quantifies the connections between water vapor transport by ARs across specific latitudes (e.g., 40°) and the hydroclimate poleward of this latitude. The findings show there are strong, time scale‐dependent (e.g., daily and monthly) connections between ARs and high‐latitude hydroclimate features. For example, the findings show a strong relationship between AR water vapor transport at a given latitude and the area‐averaged total precipitation of the region poleward. This and other results in this study indicate the importance of ARs in shaping our global weather and climate.


      Few studies since the data‐limited Zhu and Newell (1994, https://doi.org/10.1029/94GL01710; 1998, https://doi.org/10.1175/1520‐0493) studies have quantified the links between ARs and global climate features
      Using MERRA2, this study shows strong, time scale sensitive links between AR water vapor transport and extratropical/polar hydroclimate
      Evident is a strong relationship between AR water vapor transport across a latitude and area‐mean extratropical precipitation variation

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼