RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      수면-각성 조절의 신경해부학과 그의 약물 치료적 적용 = Neuroanatomy of Sleep-Wake Regulation and its Application to Pharmacotherapy

      한글로보기

      https://www.riss.kr/link?id=A104600740

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A current hypothesis of sleep–wake regulation proposes that the sleep process starts with the activation of sleep-promoting neurons located in the preoptic area of the anterior hypothalamus. This activation leads to the inhibition of wake-promoting neurons located in the posterior hypothalamus, basal forebrain, and mesopontine tegmentum, which in turn removes inhibition from the sleep-promoting structures (i.e., disinhibition) to initiatethe sleep process. Mutual inhibition between these wake- and sleep-promoting neurons results in switching properties that define discrete wakeful and sleep states with sharp transitions between them. Wake-promoting nuclei include the orexinergic lateral hypothalamic/perifornical area, the histaminergic tuberomammillary nucleus, the cholinergic pedunculopontine tegmental nucleus, the noradrenergic locus coeruleus, the 5-hydroxytryptaminergic raphe nuclei, and possibly the dopaminergic ventral tegmental area.The major sleep-promoting nucleus is the GABAergic ventrolateral preoptic nucleus of the hypothalamus. The regulation of sleep is classically viewed as the dual interaction of circadian (SCN-based) and homeostatic processes, and the propensity to be asleep or awake at any given time is a consequence of a sleep debt and its interaction with signals from the SCN circadian clock. To better understand the mechanisms of sleep and wakefulness, the focus of pharmacotherapy is on targeting specific therapies to the particular defect in sleep–wake regulation.
      번역하기

      A current hypothesis of sleep–wake regulation proposes that the sleep process starts with the activation of sleep-promoting neurons located in the preoptic area of the anterior hypothalamus. This activation leads to the inhibition of wake-promoting ...

      A current hypothesis of sleep–wake regulation proposes that the sleep process starts with the activation of sleep-promoting neurons located in the preoptic area of the anterior hypothalamus. This activation leads to the inhibition of wake-promoting neurons located in the posterior hypothalamus, basal forebrain, and mesopontine tegmentum, which in turn removes inhibition from the sleep-promoting structures (i.e., disinhibition) to initiatethe sleep process. Mutual inhibition between these wake- and sleep-promoting neurons results in switching properties that define discrete wakeful and sleep states with sharp transitions between them. Wake-promoting nuclei include the orexinergic lateral hypothalamic/perifornical area, the histaminergic tuberomammillary nucleus, the cholinergic pedunculopontine tegmental nucleus, the noradrenergic locus coeruleus, the 5-hydroxytryptaminergic raphe nuclei, and possibly the dopaminergic ventral tegmental area.The major sleep-promoting nucleus is the GABAergic ventrolateral preoptic nucleus of the hypothalamus. The regulation of sleep is classically viewed as the dual interaction of circadian (SCN-based) and homeostatic processes, and the propensity to be asleep or awake at any given time is a consequence of a sleep debt and its interaction with signals from the SCN circadian clock. To better understand the mechanisms of sleep and wakefulness, the focus of pharmacotherapy is on targeting specific therapies to the particular defect in sleep–wake regulation.

      더보기

      국문 초록 (Abstract)

      수면-각성 조절에 대한 현재의 이론은 수면 과정이 전시상하부의 시각전영역에 위치한 수면-촉진 뉴런의 활성과 함께 시작된다는 것을 제시한다. 이러한 활성은 후시상하부, 전뇌기저부, 그리고 중간교뇌피개에 위치한 각성-촉진 뉴런의 억제를 초래하고 이것이 연이어 수면-촉진 부위로부터의 억제를 무력화(즉, 탈억제)시켜 수면 과정을 증가시킨다. 각성 및 수면-촉진 뉴런 사이의 상호 억제 작용을 통해서 각성 상태와 수면 상태 사이에 신속한 전환이 이루어지게 하여 이들 각각은 불연속적인 상태를 유지하게 하는 스위치의 특성을 지니게 한다. 각성-촉진 뉴런 집합체는 orexin을 함유하고 있는 외측시상하부/뇌궁주위 영역, 히스타민성 조면유도체핵, 콜린성 중간교뇌피개, 노르아드레날린성 청반핵, 세로토닌성 솔기핵, 그리고 도파민성 배쪽피개영역 등을 포함한다. 주요 수면-촉진 뉴런 집합체는 시상하부의 GABA성 배쪽외측시각전핵이다. 수면의 조절은 전형적으로 일주기 조절 과정(시신경교차상핵과 관련됨)과 항상성 조절 과정의 상호작용으로 일어난다는 관점을 견지하고 있다. 어떤 주어진 시기에 각성 혹은 수면을 취할지에 대한 성향은 수면 부담(혹은 욕구)의 정도와 시신경교차상핵의 일주기 시계로부터 전해지는 신호의 상호작용에 의해 결정된다. 수면과 각성에 대한 이러한 기전을 더욱 잘 이해함으로서 향후에는 수면-각성 조절에 관여하는 뇌의 여러 영역들 중에서 결함이 있는 특정 부위에 대해 좀 더 특이적인 약물 치료적 개입이 가능할 것이다.
      번역하기

      수면-각성 조절에 대한 현재의 이론은 수면 과정이 전시상하부의 시각전영역에 위치한 수면-촉진 뉴런의 활성과 함께 시작된다는 것을 제시한다. 이러한 활성은 후시상하부, 전뇌기저부, 그...

      수면-각성 조절에 대한 현재의 이론은 수면 과정이 전시상하부의 시각전영역에 위치한 수면-촉진 뉴런의 활성과 함께 시작된다는 것을 제시한다. 이러한 활성은 후시상하부, 전뇌기저부, 그리고 중간교뇌피개에 위치한 각성-촉진 뉴런의 억제를 초래하고 이것이 연이어 수면-촉진 부위로부터의 억제를 무력화(즉, 탈억제)시켜 수면 과정을 증가시킨다. 각성 및 수면-촉진 뉴런 사이의 상호 억제 작용을 통해서 각성 상태와 수면 상태 사이에 신속한 전환이 이루어지게 하여 이들 각각은 불연속적인 상태를 유지하게 하는 스위치의 특성을 지니게 한다. 각성-촉진 뉴런 집합체는 orexin을 함유하고 있는 외측시상하부/뇌궁주위 영역, 히스타민성 조면유도체핵, 콜린성 중간교뇌피개, 노르아드레날린성 청반핵, 세로토닌성 솔기핵, 그리고 도파민성 배쪽피개영역 등을 포함한다. 주요 수면-촉진 뉴런 집합체는 시상하부의 GABA성 배쪽외측시각전핵이다. 수면의 조절은 전형적으로 일주기 조절 과정(시신경교차상핵과 관련됨)과 항상성 조절 과정의 상호작용으로 일어난다는 관점을 견지하고 있다. 어떤 주어진 시기에 각성 혹은 수면을 취할지에 대한 성향은 수면 부담(혹은 욕구)의 정도와 시신경교차상핵의 일주기 시계로부터 전해지는 신호의 상호작용에 의해 결정된다. 수면과 각성에 대한 이러한 기전을 더욱 잘 이해함으로서 향후에는 수면-각성 조절에 관여하는 뇌의 여러 영역들 중에서 결함이 있는 특정 부위에 대해 좀 더 특이적인 약물 치료적 개입이 가능할 것이다.

      더보기

      참고문헌 (Reference)

      1 Hobson JA, "reciprocal discharge by two brainstem neuronal groups" 55-58, science1975;189

      2 Ko EM, "Wake-related activity of tuberomammillary neurons in rats" 992 : 220-226, 2003

      3 Gaus SE, "Ventro-lateral preoptic nucleus contains slep-active, galaninergic neu-rons in multiple mamalian species" 115 : 285-294, 2002

      4 el Mansari M, "Unitary characteristics of presumptive cholinergic tegmental neurons during the slep-waking cycle in frely moving cats" 519-529,

      5 Arendt J, "Treatment of circadian rhythm disorders" 14 : 185-204, 1997

      6 "Timing of human slep recovery proces gated by a circadian pacemaker"

      7 McGinty D, "The sleep-wake switch: a neuronal alarm clock" 6 : 510-551, 2000

      8 Miyamoto M, "The sleep-promoting action of ramelteon (TAK-375) in freely moving cats" 27 : 1319-1325, 2004

      9 Saper CB, "The sleep switch: hypotha-lamic control of slep and wakefulnes" 24 : 726-731, 2001

      10 "The functional states of the thalamus and the asociated neuronal interplay" 649-742,

      1 Hobson JA, "reciprocal discharge by two brainstem neuronal groups" 55-58, science1975;189

      2 Ko EM, "Wake-related activity of tuberomammillary neurons in rats" 992 : 220-226, 2003

      3 Gaus SE, "Ventro-lateral preoptic nucleus contains slep-active, galaninergic neu-rons in multiple mamalian species" 115 : 285-294, 2002

      4 el Mansari M, "Unitary characteristics of presumptive cholinergic tegmental neurons during the slep-waking cycle in frely moving cats" 519-529,

      5 Arendt J, "Treatment of circadian rhythm disorders" 14 : 185-204, 1997

      6 "Timing of human slep recovery proces gated by a circadian pacemaker"

      7 McGinty D, "The sleep-wake switch: a neuronal alarm clock" 6 : 510-551, 2000

      8 Miyamoto M, "The sleep-promoting action of ramelteon (TAK-375) in freely moving cats" 27 : 1319-1325, 2004

      9 Saper CB, "The sleep switch: hypotha-lamic control of slep and wakefulnes" 24 : 726-731, 2001

      10 "The functional states of the thalamus and the asociated neuronal interplay" 649-742,

      11 Czeisler CA, "Stability, precision, and near-24-hour period of the human circadian pacemaker" 284 : 2177-2181, 1999

      12 Lu J, "Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep" 22 : 4568-4576, 2002

      13 Gervasoni D, "Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons" 20 : 4217-4225, 20

      14 Wurtman R, "Ramelteon: a novel treatment for the treatment of insomnia" 6 : 957-964, 2006

      15 Johnson MW, "Ramelteon: a novel hypnotic lacking abuse liability and sedative adverse effects" 63 : 1149-1157, 2006

      16 Brisbare-Roch C, "Promotion of slep by targeting the orexin system in rats, dogs and humans" 13 : 150-155, 2007

      17 Dijk DJ, "Paradoxical timing of the circadian rhy-thm of slep propensity serves to consolidate slep and wakeful-nes in humans" 63-68,

      18 Data S, "PGO wave generation: mechanism and functional sig-nificance" New Delhi: Narosa Publishing 91-106, 1999

      19 Rampon C, "Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry" 11 : 1058-1066, 19

      20 Thompson R, "Organization of proje-ctions from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat" 376 : 143-173, 1997

      21 J Comp Neurol 1984;222, "Organization of cerebral cortical aferent systems in the rat" mag (mag): 313-342,

      22 Bickford RG, "Nucleus basalis and thalamic control of neocortical activity in the frely moving rat" po (po): 4007-4026, jneurosci1988;8

      23 McCormick DA, "Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamo-cortical activity" 337-38, progneurobiol1992;39

      24 Peyron C, "Neurons containing hypocretin (orexin) project to multiple neuronal systems" 18 : 9996-10015, 1998

      25 Steriade M, "Neuronal substrates of slep and epilepsy" Cam-bridge, UK: Cambridge University Pr 2003

      26 Datta S, "Neuro-nal activities in brain-stem cholinergic nuclei related to tonic activation proceses in thalamocortical systems" 2541-2559, jneurosci1990;10

      27 Chemelli RM, "Narcolepsy in orexin knockout mice: molecular ge-netics of slep regulation" 98 : 437-451, 1999

      28 Lai Y, "Muscle atonia in REM slep" New Delhi: Narosa Publishing 69-90, 1999

      29 Deacon S, "Melatonin-induced temperature suppresion and its acute phase-shifting effects corelate in a dose-depen-dent manner in humans" 688 : 77-85, 1995

      30 Ekmekcioglu C, "Melatonin receptors in humans: biological role and clinical relevance" 60 : 97-108, 2006

      31 Veret L, "Localization of the neurons active during paradoxical (REM) slep and pro-jecting to the locus coeruleus noradrenergic neurons in the rat" 495 : 573-586, 2006

      32 Kubin L, "Interac-tion of serotonergic excitatory drive to hypoglosal motoneurons with carbachol-induced, REM slep-like atonia" 19 : 187-195, 1996

      33 Sakurai T, "Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice" 46 : 297-308, 2005

      34 Sherin JE, "Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat" 18 : 4705-4721, 1998

      35 Morison A, "Initiation of rapid eye movement slep : beyond the brainstem" New Delhi: Narosa Publishing 51-68, 1999

      36 Deurveilher S, "Indirect projections from the suprach-iasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state" 130 : 165-183, 2005

      37 Neubauer DN, "Indiplon: the development of a new hypnotic" 14 : 1269-1276, 2005

      38 Jones BE, "Immunohistochemical study of choline acetyltrans-ferase- immunoreactive proceses and cells innervating the pon-tomedullary reticular formation in the rat" 485-514,

      39 Gallopin T, "Identification of slep-promoting neurons in vitro" 404 : 992-995, 2000

      40 Saper CB, "Hypothalamic regulation of slep and circadian rhythms" 437 : 1257-1263, 2005

      41 Madsen PL, "Human regional cerebral blood flow during rapid-eye-movement slep" 502-507,

      42 Jewett ME, "Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients" 273 : R1800-R1809, 1997

      43 Saper CB, "Homeostatic, circadian, and emotional regulation of slep" 493 : 92-98, 2005

      44 Krogsgard-Larsen P, "GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid an-algesic and a novel type of hypnotic" 54 : 53-71, 2006

      45 Bateson AN, "Further potential of the GABA receptor in the tre-atment of insomnia" 7 : S3-S9, 2006

      46 Maquet P, "Functional neuroimaging of normal human slep by positron emision tomography" 9 : 207-231, 2000

      47 Hiddinga AE, "Endo-genous and exogenous components in the circadian variation of core body temperature in humans" 6 : 156-163, 1997

      48 Lawson K, "Emerging pharmacological therapies for fibromya-lgia" 7 : 631-636, 2006

      49 Yukuhiro N, "Effects of ramelteon (TAK-375) on nocturnal slep in frely moving monkeys" 1027 : 59-66, 2004

      50 Roth C, "Effects of medial thalamotomy and pallido-thalamic tractotomy on slep and waking EG in pain and Parkinsonian patients" 111 : 1266-1275, 2000

      51 Lu J, "Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM slep" 20 : 3830-3842, 20

      52 Watts AG, "Eferent projections of the suprachiasmatic nucleus Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat" 204-229,

      53 "Efect of non-twenty-four-hour rou-tines of living on oral temperature and heart rate" 283-291,

      54 Boivin DB, "Dose-res-ponse relationships for resetting of human circadian clock by light" 379 : 540-542, 1996

      55 Ito S, "Detailed pharmacological characterization of GT-2331 for the rat histamine H3 receptor" 529 : 40-46, 2006

      56 Chou TC, "Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms" 23 : 10691-10702, 2003

      57 Dijk DJ, "Contribution of the circadian pacemaker and the slep homeostat to slep propensity, slep structure, ele-ctroencephalographic slow waves, and sleep spindle activity in humans" 15 : 3526-3538, 1995

      58 Lu J, "Contrasting effects of ibotenate lesions of the paraven-tricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation" 21 : 4864-4874, 2001

      59 Wyatt JK, "Circadian temperature and melatonin rhythms, slep, and neurobehavioral function in humans living on a 20-h day" 277 : R1152-R1163, 1999

      60 Aschoff J, "Circadian rhythms in man a self-sustained oscilator with a inherent frequency underlies human 24-hour periodicity" 1427-1432, science1965;148

      61 Dijk DJ, "Circadian and slep/wake de-pendent aspects of subjective alertnes and cognitive performance" 112-117,

      62 Schenck CH, "Chro-nic behavioral disorders of human REM slep a new category of parasomnia" 293-308, slep1986;9

      63 McCormick DA, "Cholinergic and noradrenergic modulation of thalamocortical procesing" 215-220, trendsneurosci1989;12

      64 Corteli P, "Cerebral metabolism in fatal familial insomnia: rela-tion to duration, neuropathology, and distribution of protease-resistant prion protein" 49 : 126-133, 1997

      65 Maquet P, "Cerebral glucose utilization during slep-wake cycle in man determined by positron emision tomography and [18F]2-flu-oro-2-deoxy-D-glucose method" 136-143,

      66 Madsen PL, "Cerebral blod flow and metabolism during slep" 281-296,

      67 Krout KE, "Brainstem projections to mi-dline and intralaminar thalamic nuclei of the rat" 448 : 53-101, 2002

      68 McCarley RW, "Brainstem control of wakefulnes and slep" Plenum Pres;1990

      69 Franzini C, "Brain metabolism and blood flow during slep" 3-16,

      70 Mochizuki T, "Behavioral state instability in orexin knock-out mice" 24 : 6291-6300, 2004

      71 Jones BE, "Arousal systems" 8 : s438-s451, 2003

      72 Chou TC, "Aferents to the ventrolateral preoptic nucleus" 22 : 977-990, 2002

      73 Yoshida K, "Aferents to the orexin neurons of the rat brain" 494 : 845-861, 2006

      74 Deacon S, "Adapting to phase shifts: II. Effects of mela-tonin and conflicting light treatment" 59 : 675-682, 1996

      75 Deacon S, "Acute phase-shifting efects of melatonin asociated with supresion of core body temperature in humans" 32-34,

      76 Sherin JE, "Activation of ventrolateral preoptic neurons during slep" 271 : 216-219, 1996

      77 Hum Ne-urobiol 1982;1, "A two proces model of slep regulation" 195-204

      78 Aston-Jones G, "A neural circuit for circadian regulation of arousal" 4 : 732-738, 2001

      79 Alan JS, "A method to assess the intrinsic period of the endogenous circadian oscillator"

      80 Minors DS, "A human phase-response curve to light" 36-40,

      81 Honma K, "A human phase response curve for bright light pulses" 167-168, jpnjpsychiatryneurol1988;42

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2019 평가예정 신규평가 신청대상 (신규평가)
      2018-12-01 평가 등재후보 탈락 (계속평가)
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-12-10 학술지명변경 외국어명 : 미등록 -> The Korean Journal of Psychopharmacology KCI등재후보
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.27 0.25 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼