RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      소셜 네트워크 환경에서 변형된 TF-IDF를 이용한 핫 토픽 예측 기법

      한글로보기

      https://www.riss.kr/link?id=A103054464

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근 실시간으로 생성되는 대용량의 SNS 데이터로부터 유의미한 정보를 찾아내고 분석하는 것이 중요해지면서 핫 토픽 예측에 대한 관심도 크게 증가하고 있다. 기존 핫 토픽 검출 기법은 시...

      최근 실시간으로 생성되는 대용량의 SNS 데이터로부터 유의미한 정보를 찾아내고 분석하는 것이 중요해지면서 핫 토픽 예측에 대한 관심도 크게 증가하고 있다. 기존 핫 토픽 검출 기법은 시간적 속성을 고려하지 않기 때문에 빠르게 변화하는 사회에서 이슈화되는 핫 토픽을 예측하기에는 부적합하다. 본 논문에서는 소셜 네트워크 환경에서 변형된 TF-IDF를 통한 핫 토픽 예측 기법을 제안한다. 변형된 TF-IDF을 이용하여 과거의 IDF 값에 대한 현재의 IDF값의 비율로 순간적으로 이슈화되는 후보 키워드 집합을 추출한다. 추출된 후보 키워드에 사용자의 영향력과 전문성을 고려한 가중치를 부여하여 핫 토픽 예측 지수를 계산한다. 제안하는 기법의 우수성을 보이기 위해 기존의 핫 토픽 검출 기법과의 성능평가를 수행한다. 또한 제안하는 기법이 핫 토픽을 정확히 예측하는지를 보이기 위해 네이버 한글 뉴스 기사를 통한 핫 토픽 예측 기법의 질을 평가한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently, the interest in predicting hot topics has grown significantly as it has become more important to find and analyze meaningful information from a large amount of data flowing in social networking services. Existing hot topic detection schemes ...

      Recently, the interest in predicting hot topics has grown significantly as it has become more important to find and analyze meaningful information from a large amount of data flowing in social networking services. Existing hot topic detection schemes do not consider a temporal property, so they are not suitable to predict hot topics that are rapidly issued in a changing society. This paper proposes a hot topic prediction scheme that uses a modified TF-IDF in social networking environments. The modified TF-IDF extracts a candidate set of keywords that are momentarily issued. The proposed scheme then calculates the hot topic prediction scores by assigning weights considering user influence and professionality to extract the candidate keywords. The superiority of the proposed scheme is shown by comparing it to an existing detection scheme. In addition, to show whether or not it predicts hot topics correctly, we evaluate its quality with Korean news articles from Naver.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 제안하는 핫 토픽 예측 기법
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 제안하는 핫 토픽 예측 기법
      • 4. 성능평가
      • 5. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 "https://ko.wikipedia.org/wiki/TF-IDF"

      2 "https://en.wikipedia.org/wiki/Precision_and_recall"

      3 "https://dev.twitter.com/streaming/overview"

      4 Fabien Duchateau, "Who can Best Answer a Query in My Social Network?" 218-223, 2011

      5 Sitaram Asur, "Predicting the future with social media" 01 : 492-499, 2010

      6 RuiGuo Yu, "Online hot topic detection from web news archive in short terms" 919-923, 2014

      7 H. Kim, "Discovering Hot Topics using Twitter Streaming Data" 1215-1220, 2013

      8 J. Haziq, "'Good' versus 'Bad' Opinion on Micro Blogging Networks : Polarity Classification of Twitter" 3 (3): 49-56, 2014

      1 "https://ko.wikipedia.org/wiki/TF-IDF"

      2 "https://en.wikipedia.org/wiki/Precision_and_recall"

      3 "https://dev.twitter.com/streaming/overview"

      4 Fabien Duchateau, "Who can Best Answer a Query in My Social Network?" 218-223, 2011

      5 Sitaram Asur, "Predicting the future with social media" 01 : 492-499, 2010

      6 RuiGuo Yu, "Online hot topic detection from web news archive in short terms" 919-923, 2014

      7 H. Kim, "Discovering Hot Topics using Twitter Streaming Data" 1215-1220, 2013

      8 J. Haziq, "'Good' versus 'Bad' Opinion on Micro Blogging Networks : Polarity Classification of Twitter" 3 (3): 49-56, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2014-09-16 학술지명변경 한글명 : 정보과학회논문지 : 컴퓨팅의 실제 및 레터 -> 정보과학회 컴퓨팅의 실제 논문지
      외국어명 : Journal of KIISE : Computing Practices and Letters -> KIISE Transactions on Computing Practices
      KCI등재
      2013-04-26 학술지명변경 외국어명 : Journal of KISS : Computing Practices and Letters -> Journal of KIISE : Computing Practices and Letters KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-10-02 학술지명변경 한글명 : 정보과학회논문지 : 컴퓨팅의 실제 -> 정보과학회논문지 : 컴퓨팅의 실제 및 레터
      외국어명 : Journal of KISS : Computing Practices -> Journal of KISS : Computing Practices and Letters
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.29 0.29 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.21 0.503 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼