RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      ON (2,5)-REGULAR BIPARTITIONS WITH ODD PARTS DISTINCT

      한글로보기

      https://www.riss.kr/link?id=A107223996

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In his work, K. Alladi studied the partition function pod(n), the number of partitions of an integer n with odd parts distinct (the even parts are unrestricted). He obtained a series expansion for the product generating function of partitions in which the odd parts do not repeat. Later, Hirschhorn and Sellers obtained some internal congruences involving the infinite families and Ramanujan-type congruences for pod(n). Let B(n) denote the number of (2, 5)-regular bipartitions of a positive integer n with odd parts distinct (even parts are unrestricted). In this paper, we establish many infinite families of congruences modulo powers of 2 for B(n). For example, for modulo 16, ∞∑n=0 B(16·34α·52β·72ϒn+6·34α·52β·72ϒ+1)qn≡8f91, where α, β, ϒ≥0.
      번역하기

      In his work, K. Alladi studied the partition function pod(n), the number of partitions of an integer n with odd parts distinct (the even parts are unrestricted). He obtained a series expansion for the product generating function of partitions in which...

      In his work, K. Alladi studied the partition function pod(n), the number of partitions of an integer n with odd parts distinct (the even parts are unrestricted). He obtained a series expansion for the product generating function of partitions in which the odd parts do not repeat. Later, Hirschhorn and Sellers obtained some internal congruences involving the infinite families and Ramanujan-type congruences for pod(n). Let B(n) denote the number of (2, 5)-regular bipartitions of a positive integer n with odd parts distinct (even parts are unrestricted). In this paper, we establish many infinite families of congruences modulo powers of 2 for B(n). For example, for modulo 16, ∞∑n=0 B(16·34α·52β·72ϒn+6·34α·52β·72ϒ+1)qn≡8f91, where α, β, ϒ≥0.

      더보기

      참고문헌 (Reference)

      1 G. N. Watson, "Theorems stated by Ramanujan (VII): Theorems on continued fractions" 4 : 39-48, 1929

      2 K. Alladi, "The legacy of Alladi Ramakrishnan in the Mathematical Sciences" Springer 169-182, 2010

      3 C. Adiga, "Some new congruences for (s; t)-regular bipartition functions" Publications de I‘Institut Mathematique 2018

      4 M. D. Hirschhorn, "Ramanujan’s “most beautiful identity”" 118 : 839-845, 2011

      5 B. C. Berndt, "Ramanujan’s Notebooks, Part III" Springer-Verlag 1991

      6 M. Prasad, "On (;m)-regular partitions with distinct parts" 46 : 19-27, 2018

      7 L. Wang, "New Congruences for partition where the odd parts are distinct" 18 : 2015

      8 M. D. Hirschhorn, "Elementary proofs of parity results for 5-regular partitions" 81 : 58-63, 2010

      9 N. Calkin, "Divisibility properties of the 5-regular and 13-regular partition functions" 8 : 2008

      10 S. Radu, "Congruence properties modulo 5 and 7 for the pod function" 7 : 2249-2259, 2011

      1 G. N. Watson, "Theorems stated by Ramanujan (VII): Theorems on continued fractions" 4 : 39-48, 1929

      2 K. Alladi, "The legacy of Alladi Ramakrishnan in the Mathematical Sciences" Springer 169-182, 2010

      3 C. Adiga, "Some new congruences for (s; t)-regular bipartition functions" Publications de I‘Institut Mathematique 2018

      4 M. D. Hirschhorn, "Ramanujan’s “most beautiful identity”" 118 : 839-845, 2011

      5 B. C. Berndt, "Ramanujan’s Notebooks, Part III" Springer-Verlag 1991

      6 M. Prasad, "On (;m)-regular partitions with distinct parts" 46 : 19-27, 2018

      7 L. Wang, "New Congruences for partition where the odd parts are distinct" 18 : 2015

      8 M. D. Hirschhorn, "Elementary proofs of parity results for 5-regular partitions" 81 : 58-63, 2010

      9 N. Calkin, "Divisibility properties of the 5-regular and 13-regular partition functions" 8 : 2008

      10 S. Radu, "Congruence properties modulo 5 and 7 for the pod function" 7 : 2249-2259, 2011

      11 M. S. Mahadeva Naika, "Color partition identities arising from Ramanujan’s theta functions" 41 (41): 633-660, 2016

      12 M. D. Hirschhorn, "Arithmetic properties of partitions with odd parts distinct" 22 (22): 273-284, 2010

      13 M. S. Mahadeva Naika, "Arithmetic properties of 5-regular bipartitions" 13 (13): 937-956, 2017

      14 S. P. Cui, "Arithmetic properties of -regular partitions" 51 : 507-523, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2024 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2008-12-24 학술지명변경 한글명 : 장전수학회 논문집 -> Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집) KCI등재후보
      2008-04-08 학회명변경 한글명 : 장전수리과학회 -> 장전수학회(章田數學會) KCI등재후보
      2008-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.42 0.42 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.3 0.28 0.704 0.2
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼