RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법

      한글로보기

      https://www.riss.kr/link?id=A107805084

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual ...

      With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual Dense Network), in which the initial feature information is transmitted to the last layer using residual dense blocks, and subsequent layers are restored using input information of previous layers. However, if all hierarchical features are connected and learned and a large number of residual dense blocks are stacked, despite good performance, a large number of parameters and huge computational load are needed, so it takes a lot of time to learn a network and a slow processing speed, and it is not applicable to a mobile system. In this paper, we use the residual dense structure, which is a continuous memory structure that reuses previous information, and the residual dense channel attention block using the channel attention method that determines the importance according to the feature map of the image. We propose a method that can increase the depth to obtain a large receptive field and maintain a concise model at the same time. As a result of the experiment, the proposed network obtained PSNR as low as 0.205dB on average at 4× magnification compared to RDN, but about 1.8 times faster processing speed, about 10 times less number of parameters and about 1.74 times less computation.

      더보기

      참고문헌 (Reference)

      1 K. Simonyan, "Very deep convolutional networks for large-scale image recognition" 2015

      2 C. Ren, "Single Image Super-Resolution via Adaptive High-Dimensional Non-Local Total Variation and Adaptive Geometric Feature" 90-106, 2017

      3 K. Zhang, "Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression" 4544-4556, 2012

      4 J. -B. Huang, "Single Image Super-Resolution From Transformed Self -Exemplars" 5197-5206, 2015

      5 Y. Romano, "Single Image Interpolation Via Adaptive Nonlocal Sparsity-Based Modeling" 3085-3098, 2014

      6 Zhang, "Residual dense network for image super-resolution" 2472-2481, 2018

      7 W. Shi, "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network" 1874-1883, 2016

      8 R. Zeyde, "On single image scale-up using sparse-representations" 711-730, 2012

      9 V. Papyan, "Multi-Scale Patch-Based Image Restoration" 249-261, 2016

      10 Bevilacqua, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding" 135.1-135.10, 2012

      1 K. Simonyan, "Very deep convolutional networks for large-scale image recognition" 2015

      2 C. Ren, "Single Image Super-Resolution via Adaptive High-Dimensional Non-Local Total Variation and Adaptive Geometric Feature" 90-106, 2017

      3 K. Zhang, "Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression" 4544-4556, 2012

      4 J. -B. Huang, "Single Image Super-Resolution From Transformed Self -Exemplars" 5197-5206, 2015

      5 Y. Romano, "Single Image Interpolation Via Adaptive Nonlocal Sparsity-Based Modeling" 3085-3098, 2014

      6 Zhang, "Residual dense network for image super-resolution" 2472-2481, 2018

      7 W. Shi, "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network" 1874-1883, 2016

      8 R. Zeyde, "On single image scale-up using sparse-representations" 711-730, 2012

      9 V. Papyan, "Multi-Scale Patch-Based Image Restoration" 249-261, 2016

      10 Bevilacqua, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding" 135.1-135.10, 2012

      11 H. A. Aly, "Image up-sampling using total-variation regularization with a new observation model" 1647-1659, 2005

      12 Y. Tai, "Image super-resolution via deep recursive residual network" 2790-2798, 2017

      13 Y. Zhang, "Image super-resolution using very deep residual channel attention networks" 286-301, 2018

      14 C. Dong, "Image Super-Resolution Using Deep Convolutional Networks" 295-307, 2016

      15 X. Zhang, "Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation" 887-896, 2008

      16 G. Huang, "Densely Connected Convolutional Networks" 2261-2269, 2017

      17 W. Ye, "Convolutional Edge Diffusion for Fast Contrast-guided Image Interpolation" 1260-1264, 2016

      18 J. Kim, "Accurate image super resolution using very deep convolutional networks" 1646-1654, 2016

      19 D. Martin, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics" 416-423, 2001

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-15 학회명변경 한글명 : 한국방송공학회 -> 한국방송∙미디어공학회
      영문명 : The Korean Society Of Broadcast Engineers -> The Korean Institute of Broadcast and Media Engineers
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.27 0.526 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼