RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      An Image Contrast Enhancement Using New Variational Framework

      한글로보기

      https://www.riss.kr/link?id=A101600451

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this work, we propose new variational technique for image contrast enhancement which utilizes global and local information around each pixel. First, we have defined the energy functional by a weighted linear combination of three terms which are called on a local contrast term, a global contrast term and a dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that control the departure between new pixel value and original pixel value of image while preserving original image characteristics as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of the proposed functional by using the fundamental lemma based on the calculus of variations. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of images better than existing techniques.
      번역하기

      In this work, we propose new variational technique for image contrast enhancement which utilizes global and local information around each pixel. First, we have defined the energy functional by a weighted linear combination of three terms which are cal...

      In this work, we propose new variational technique for image contrast enhancement which utilizes global and local information around each pixel. First, we have defined the energy functional by a weighted linear combination of three terms which are called on a local contrast term, a global contrast term and a dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that control the departure between new pixel value and original pixel value of image while preserving original image characteristics as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of the proposed functional by using the fundamental lemma based on the calculus of variations. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of images better than existing techniques.

      더보기

      참고문헌 (Reference)

      1 김선월, "특징점 자동 추출과 로버스트 형상분석을 이용한 영상정합의 비교" 한국자료분석학회 10 (10): 1903-1914, 2008

      2 윤현섭, "밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법" 대한전자공학회 46 (46): 10-21, 2009

      3 Teboul, S., "Variational approach for edge-preserving regularization using coupled PDE's" 7 (7): 387-397, 1998

      4 홍창곤, "The Asymptotic Properties of Mean-centered Binned Kernel Density Estimator" 한국자료분석학회 11 (11): 1771-1783, 2009

      5 Kaur, M., "Survey of contrast enhancement techniques based on histogram equalization" 2 (2): 137-141, 2011

      6 Bertalmio, M., "Issues about Retinex theory and contrast enhancement" 83 (83): 101-119, 2009

      7 Suralkar, S. R., "Image contrast enhancement using histogram modification technique" 1 (1): 1-7, 2012

      8 Struc, V., "Histogram remapping as a preprocessing step for robust face recognition" 6 (6): 520-529, 2009

      9 Sapiro, G., "Histogram modification via differential equations" 135 (135): 238-268, 1997

      10 이재식, "Effects of Car Navigation System Monitoring on Driver's Spatial Tracking and Memory" 한국자료분석학회 11 (11): 2855-2869, 2009

      1 김선월, "특징점 자동 추출과 로버스트 형상분석을 이용한 영상정합의 비교" 한국자료분석학회 10 (10): 1903-1914, 2008

      2 윤현섭, "밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법" 대한전자공학회 46 (46): 10-21, 2009

      3 Teboul, S., "Variational approach for edge-preserving regularization using coupled PDE's" 7 (7): 387-397, 1998

      4 홍창곤, "The Asymptotic Properties of Mean-centered Binned Kernel Density Estimator" 한국자료분석학회 11 (11): 1771-1783, 2009

      5 Kaur, M., "Survey of contrast enhancement techniques based on histogram equalization" 2 (2): 137-141, 2011

      6 Bertalmio, M., "Issues about Retinex theory and contrast enhancement" 83 (83): 101-119, 2009

      7 Suralkar, S. R., "Image contrast enhancement using histogram modification technique" 1 (1): 1-7, 2012

      8 Struc, V., "Histogram remapping as a preprocessing step for robust face recognition" 6 (6): 520-529, 2009

      9 Sapiro, G., "Histogram modification via differential equations" 135 (135): 238-268, 1997

      10 이재식, "Effects of Car Navigation System Monitoring on Driver's Spatial Tracking and Memory" 한국자료분석학회 11 (11): 2855-2869, 2009

      11 조완현, "Edge-Preserving Denoising Method Using Variation Approach and Image Gradient Distribution" 한국자료분석학회 15 (15): 2911-2921, 2013

      12 조완현, "Detection and Recognition of Moving Objects using the Moving Mask Method and the Hidden Markov Model" 한국자료분석학회 13 (13): 53-62, 2011

      13 Ibrahim, H., "Brightness preserving dynamic histogram equalization for image contrast enhancement" 53 (53): 1752-1758, 2007

      14 Prabhakar, C. J., "An image based technique for enhancement of underwater images" 3 (3): 217-224, 2011

      15 Provenzi, E., "A wavelet perspective on variational perceptually-inspired color enhancement" 106 (106): 153-117, 2014

      16 Kimmel, R., "A variational framework for Retinex" 52 (52): 7-23, 2003

      17 Agaian, S. S., "A new measure of image enhancement" 19-22, 2000

      18 Maini, R., "A comprehensive review of image enhancement techniques" 2 (2): 8-13, 2010

      19 Lavania, K. K., "A comparative study of image enhancement using histogram approach" 32 (32): 1-6, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.26 1.26 1.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.05 0.98 0.956 0.4
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼