RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      GPS L1 C/A 신호를 위한 심층신경망을 이용한 단일 연속파 재밍 검출기법 = Single Continuous-Wave Jamming Detection Scheme Using a Deep Neural Network for GPS L1 C/A Signal

      한글로보기

      https://www.riss.kr/link?id=A106978347

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      .

      .

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, a novel deep neural network-based single continuous wave jamming detection scheme is proposed for Global Positioning System (GPS) L1 Coarse/Acquisition (C/A) signals, which are used most frequently in civilian satellite-based navigation...

      In this paper, a novel deep neural network-based single continuous wave jamming detection scheme is proposed for Global Positioning System (GPS) L1 Coarse/Acquisition (C/A) signals, which are used most frequently in civilian satellite-based navigation systems. The main environmental variables considered are as follows: The effective jamming power-to-noise spectral density ratio (J/N0) has a range of 34 dB-Hz to 64 dB-Hz; the center frequency and Doppler frequency of a single continuous wave jamming occur uniformly within ± 1 KHz and within ± 10 KHz, respectively, based on the center frequency of the GPS L1 C/A signal. The designed deep neural network consists of six hidden layers and one SoftMax layer. In order to assess the performance of the proposed scheme, the energy detection scheme that is frequently used for the detection of single continuous wave jamming at pre-correlation level is considered as a conventional scheme. When the false alarm probability is set to 10-5 via simulation, it was confirmed that the detection probability of the proposed scheme is approximately 98% or higher, while that of the conventional scheme is approximately 78% at an effective J/N0 of 61 dB-Hz.

      더보기

      참고문헌 (Reference)

      1 유승수, "합성곱 신경망을 활용한 FFT 기반 GNSS 신호 검출기법" 제어·로봇·시스템학회 26 (26): 199-206, 2020

      2 우주현, "무인수상선의 도킹을 위한 합성곱 신경망 기반 상대위치추정 기법" 제어·로봇·시스템학회 25 (25): 625-632, 2019

      3 J. V. Carroll, "Vulnerability assessment of the U.S. transportation infrastructure that relies on the Global Positioning System" 56 (56): 185-193, 2003

      4 E. D. Kaplan, "Understanding GPS/GNSS:Principles and Applications" Artech House 2017

      5 T. Kraus, "Survey of in-car jammers-analysis and modeling of the RF signals and IF samples (suitable for active signal cancellation)" 430-435, 2011

      6 R. Ashley, "Statement for the Record: Worldwide Threat Assessment" Defense Intelligence Agency 2018

      7 R. H. Mitch, "Signal characteristics of civil GPS jammers" 1907-1919, 2011

      8 M. Foucras, "Probability of detection for GNSS signals with sign transition" 52 (52): 1296-1308, 2016

      9 K. Sheridan, "Pre- and post-correlation GNSS interference detection within software defined radio" 3542-3548, 2012

      10 P. L. Lineswala, "Performance analysis of different interference detection techniques for navigation with Indian constellation" 13 (13): 1207-1213, 2019

      1 유승수, "합성곱 신경망을 활용한 FFT 기반 GNSS 신호 검출기법" 제어·로봇·시스템학회 26 (26): 199-206, 2020

      2 우주현, "무인수상선의 도킹을 위한 합성곱 신경망 기반 상대위치추정 기법" 제어·로봇·시스템학회 25 (25): 625-632, 2019

      3 J. V. Carroll, "Vulnerability assessment of the U.S. transportation infrastructure that relies on the Global Positioning System" 56 (56): 185-193, 2003

      4 E. D. Kaplan, "Understanding GPS/GNSS:Principles and Applications" Artech House 2017

      5 T. Kraus, "Survey of in-car jammers-analysis and modeling of the RF signals and IF samples (suitable for active signal cancellation)" 430-435, 2011

      6 R. Ashley, "Statement for the Record: Worldwide Threat Assessment" Defense Intelligence Agency 2018

      7 R. H. Mitch, "Signal characteristics of civil GPS jammers" 1907-1919, 2011

      8 M. Foucras, "Probability of detection for GNSS signals with sign transition" 52 (52): 1296-1308, 2016

      9 K. Sheridan, "Pre- and post-correlation GNSS interference detection within software defined radio" 3542-3548, 2012

      10 P. L. Lineswala, "Performance analysis of different interference detection techniques for navigation with Indian constellation" 13 (13): 1207-1213, 2019

      11 R. T. Ioannides, "Known vulnerabilities of global navigation satellite systems, status, and potential mitigation techniques" 104 (104): 1174-1194, 2016

      12 R. M. Ferre, "Jammer classification in GNSS bands via machine learning algorithms" 19 (19): 1-15, 2019

      13 진미현, "Jammer Identification Technique based on a Template Matching Method" 사단법인 항법시스템학회 3 (3): 45-51, 2014

      14 R. M. Ferre, "In-lab validation of jammer detection and direction finding algorithm for GNSS" 2018

      15 D. Borio, "Impact and detection of GNSS jammers on consumer grade satellite navigation receivers" 104 (104): 1233-1245, 2016

      16 F. Dovis, "GNSS Interference Threats and Countermeasures" Artech House 2015

      17 J. B.-Y. Tsui, "Fundamentals of Global Positioning System Receivers: A Software Approach" John Wiley & Sons, Inc 2005

      18 M. M. E. Moussa, "Enhanced GPS narrowband jamming detection using high-resolution spectral estimation" 21 (21): 475-485, 2017

      19 J. W. Betz, "Effect of partial-band interference on receiver estimation of C/N0 : Theory" 817-828, 2001

      20 N. Fadaei, "Detection, Characterization and Mitigation of GNSS Jamming Interference Using Pre-Correlation Methods" University of Calgary 2016

      21 A. Courville, "Deep Learning" MIT Press 2015

      22 Defense Intelligence Agency, "Challenges to Security in Space, Committed to Excellence in Defense of the Nation"

      23 M. Foucras, "Assessing the performance of GNSS signal acquisition" 9 (9): 68-79, 2014

      24 R. Bauernfeind, "Analysis, Detection and Mitigation of Incar GNSS Jammer Interference in Intelligent Transport Systems" 1-10, 2012

      25 R. Wu, "Adaptive Interference Mitigation in GNSS" Science Press, Beijing and Springer Nature Singapore Pte Ltd 2018

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-02 학술지명변경 한글명 : 제어.자동화.시스템공학 논문지 -> 제어.로봇.시스템학회 논문지
      외국어명 : Journal of Control, Automation and Systems Engineering -> Journal of Institute of Control, Robotics and Systems
      KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.69 0.69 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.39 0.509 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼