In this paper, a transient identification based on a Hidden Markov Model (HMM) has been suggested and evaluated experimentally for the classification of transients in the dynamic process. The transient can be identified by its unique time dependent pa...
In this paper, a transient identification based on a Hidden Markov Model (HMM) has been suggested and evaluated experimentally for the classification of transients in the dynamic process. The transient can be identified by its unique time dependent patterns related to the principal variables. The HMM, a double stochastic process, can be applied to transient identification which is a spatial and temporal classification problem under a statistical pattern recognition framework. The HMM is created for each transient from a set of training data by the maximum-likelihood estimation method. The transient identification is determined by calculating which model has the highest probability for the given test data. Several experimental tests have been performed with normalization methods, clustering algorithms, and a number of states in HMM. Several experimental tests have been performed including superimposing random noise, adding systematic error, and untrained transients. The proposed real-time transient identification system has many advantages, however, there are still a lot of problems that should be solved to apply to a real dynamic process. Further efforts are being made to improve the system performance and robustness to demonstrate reliability and accuracy to the required level.