RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Numerical investigation of mixed convective flow of micropolar Casson fluid with Cattaneo–Christov heat flux model on an inclined vertical stretching surface

      한글로보기

      https://www.riss.kr/link?id=A109154469

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      It is vitally critical to understand the dynamics of the non-Newtonian fluids model from an engineering and industrial perspective. Many industrial and technical activities, such as the extrusion of polymer sheets, the manufacturing of paper, and the ...

      It is vitally critical to understand the dynamics of the non-Newtonian fluids model from an engineering and industrial perspective. Many industrial and technical activities, such as the extrusion of polymer sheets, the manufacturing of paper, and the development of photographic films, require non-Newtonian fluids. Energy transportation has numerous industrial applications, and classical heat and mass transfer laws do not accurately anticipate thermal and solute relaxation times. This study applies the modified Ohm law to heat and mass transport, utilizing Fick’s and generalized Fourier concepts. And the primary purpose of this study is to explore the characteristics of heat and mass transport in the magnetohydrodynamics-mixed convective flow involving a micropolar Casson fluid across the vertically inclined starching surface with multiple slip effects. Moreover, the study considers additional factors like thermal radiation, heat generation, chemical reactions, and the influence of thermophoretic to analyze both energy and nanoparticle concentration aspects comprehensively. To simplify the flow analysis, the original flow model is transformed into a couple of ordinary differential equations (ODEs) by employing relevant similarity transformations. These ODEs establish a system that is solved numerically by using the Bvp4c solver through MATLAB. It is worth noticing that a more substantial estimation of the thermal and concentration relaxation parameters decays the fluid temperature and nanoparticle concentration, respectively, and the growth of the material parameter reduces the drag force, which consequently augmenting the fluid velocity. Furthermore, the enhancement occurs in the skin friction due to greater estimation of the micropolar parameter, while the Casson fluid parameter causes the opposite trend.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼