RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      이동통신 사용패턴을 이용한 고객의 직업판정

      한글로보기

      https://www.riss.kr/link?id=A75839025

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, as most companies recognize the importance of the customer relationship management, they strongly believe that they must know who their custormers are. the job of a customer is very important information for us to understand the customer. Hover, since most customers are reluctant to reveal themselves, they do not let us know their jobs, and even provide false information about their jobs. The target domain of our research is mobile telecommunication. In this research, we developed a system that identifies the customer's job by utilizing the Call Detail Record. Using artificial neural networks, we developed a two-step Job Identification System.In first step, it identifies the four job classes, then in the second step, it subdivides these four job classes into seven jobs. the accuracy of identifying the seven jobs was 71.9%.
      번역하기

      Recently, as most companies recognize the importance of the customer relationship management, they strongly believe that they must know who their custormers are. the job of a customer is very important information for us to understand the customer. Ho...

      Recently, as most companies recognize the importance of the customer relationship management, they strongly believe that they must know who their custormers are. the job of a customer is very important information for us to understand the customer. Hover, since most customers are reluctant to reveal themselves, they do not let us know their jobs, and even provide false information about their jobs. The target domain of our research is mobile telecommunication. In this research, we developed a system that identifies the customer's job by utilizing the Call Detail Record. Using artificial neural networks, we developed a two-step Job Identification System.In first step, it identifies the four job classes, then in the second step, it subdivides these four job classes into seven jobs. the accuracy of identifying the seven jobs was 71.9%.

      더보기

      참고문헌 (Reference)

      1 "Visualization of Large Category Map for Internet Browsing" 35 : 2003.

      2 "Proceedings of the IEEE" 1990.

      3 "Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless Telecommunications Industry" 11 : 2000.

      4 "Mastering Data Mining" John Wiley & Sons, Inc 2000.

      5 "An LTV Model and Customer Segmentation based on Customer Value A Case Study on the Wireless Telecommunication Industry" 26 : 2004.

      6 "A Strategic Approach to Customer Satisfaction in the Telecommunication Service Market" 33 : 1997.

      7 "A Practical Guide to Neural Nets" Addison- Wesley Publishing Company Inc. 1991.

      8 "A Kohonen Self- Organizing Map Approach to Addressing a Multiple Objective" 72 : 2001.

      1 "Visualization of Large Category Map for Internet Browsing" 35 : 2003.

      2 "Proceedings of the IEEE" 1990.

      3 "Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless Telecommunications Industry" 11 : 2000.

      4 "Mastering Data Mining" John Wiley & Sons, Inc 2000.

      5 "An LTV Model and Customer Segmentation based on Customer Value A Case Study on the Wireless Telecommunication Industry" 26 : 2004.

      6 "A Strategic Approach to Customer Satisfaction in the Telecommunication Service Market" 33 : 1997.

      7 "A Practical Guide to Neural Nets" Addison- Wesley Publishing Company Inc. 1991.

      8 "A Kohonen Self- Organizing Map Approach to Addressing a Multiple Objective" 72 : 2001.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-03-25 학회명변경 영문명 : 미등록 -> Korea Intelligent Information Systems Society KCI등재
      2015-03-17 학술지명변경 외국어명 : 미등록 -> Journal of Intelligence and Information Systems KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-11 학술지명변경 한글명 : 한국지능정보시스템학회 논문지 -> 지능정보연구 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.51 1.51 1.99
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.78 1.54 2.674 0.38
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼