<P>To successfully perform daily activities such as maintaining posture or running, humans need to be sensitive to self-motion over a large range of motion intensities. Recent studies have shown that the human ability to discriminate self-motion...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107483817
2015
-
SCOPUS,SCIE
학술저널
3553-3564(12쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>To successfully perform daily activities such as maintaining posture or running, humans need to be sensitive to self-motion over a large range of motion intensities. Recent studies have shown that the human ability to discriminate self-motion...
<P>To successfully perform daily activities such as maintaining posture or running, humans need to be sensitive to self-motion over a large range of motion intensities. Recent studies have shown that the human ability to discriminate self-motion in the presence of either inertial-only motion cues or visual-only motion cues is not constant but rather decreases with motion intensity. However, these results do not yet allow for a quantitative description of how self-motion is discriminated in the presence of combined visual and inertial cues, since little is known about visual–inertial perceptual integration and the resulting self-motion perception over a wide range of motion intensity. Here we investigate these two questions for head-centred yaw rotations (0.5 Hz) presented either in darkness or combined with visual cues (optical flow with limited lifetime dots). Participants discriminated a reference motion, repeated unchanged for every trial, from a comparison motion, iteratively adjusted in peak velocity so as to measure the participants’ differential threshold, i.e. the smallest perceivable change in stimulus intensity. A total of six participants were tested at four reference velocities (15, 30, 45 and 60 °/s). Results are combined for further analysis with previously published differential thresholds measured for visual-only yaw rotation cues using the same participants and procedure. Overall, differential thresholds increase with stimulus intensity following a trend described well by three power functions with exponents of 0.36, 0.62 and 0.49 for inertial, visual and visual–inertial stimuli, respectively. Despite the different exponents, differential thresholds do not depend on the type of sensory input significantly, suggesting that combining visual and inertial stimuli does not lead to improved discrimination performance over the investigated range of yaw rotations.</P>