In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation utt −M(∥∇u∥2)△u + αut + f(u) = 0 in Ω [0,∞), u(x, t) = 0 on Γ1 × [0,∞), αu/αu + g(ut) = 0 on Γ0 × [0,∞), u(x, 0) = u0, ut(x, 0) ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A103363540
Zai-Yun Zhang (National University of Defense Technology) ; Jian-Hua Huang (National University of Science and Technology)
2014
English
KCI등재,SCIE,SCOPUS
학술저널
189-206(18쪽)
5
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation utt −M(∥∇u∥2)△u + αut + f(u) = 0 in Ω [0,∞), u(x, t) = 0 on Γ1 × [0,∞), αu/αu + g(ut) = 0 on Γ0 × [0,∞), u(x, 0) = u0, ut(x, 0) ...
In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation utt −M(∥∇u∥2)△u + αut + f(u) = 0 in Ω [0,∞), u(x, t) = 0 on Γ1 × [0,∞), αu/αu + g(ut) = 0 on Γ0 × [0,∞), u(x, 0) = u0, ut(x, 0) = u1 in Ω
with nonlinear boundary damping by Galerkin approximation benefited from the ideas of Zhang et al. [33]. Furthermore,we overcome some dif- ficulties due to the presence of nonlinear terms M(∥∇u∥2) and g(ut) by introducing a new variables and we can transform the boundary value problem into an equivalent one with zero initial data by argument of compacity and monotonicity.
참고문헌 (Reference)
1 G. Kirchhoff, "Vorlesungen Uber Mechanik" Teubner 1883
2 I. Lasiecka, "Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping" 6 (6): 507-533, 1993
3 R. Ikehata, "Some remarks on the wave equations with nonlinear damping and source terms" 54 (54): 1165-1175, 1996
4 R. A. Adams, "Sobolev Space" Acadmic Press 1975
5 J. L. Lions, "Quelques M´ethodes R´esolution des Problemes aux Limites Non-Lineares" Dunod 1969
6 J. L. Lions, "Problemes aux limites non homogenes applications" Dunod 1-, 1968
7 J. Y. Park, "On the existence of solutions of strongly damped wave equa-tions" 23 (23): 369-382, 2000
8 Z. Y. Zhang, "On solvability and stabilization of a class of hyperbolic hemivariational inequalities in elasticity" 54 (54): 297-314, 2011
9 K. Narasimha, "On global solutions of some degenerate quasilinear hyper-bolic equation with dissipative terms" 33 : 151-159, 1990
10 T. Matsuyama, "On global solutions and energy decay for the wave equa-tions of Kirchhoff type with nonlinear damping terms" 204 (204): 729-753, 1996
1 G. Kirchhoff, "Vorlesungen Uber Mechanik" Teubner 1883
2 I. Lasiecka, "Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping" 6 (6): 507-533, 1993
3 R. Ikehata, "Some remarks on the wave equations with nonlinear damping and source terms" 54 (54): 1165-1175, 1996
4 R. A. Adams, "Sobolev Space" Acadmic Press 1975
5 J. L. Lions, "Quelques M´ethodes R´esolution des Problemes aux Limites Non-Lineares" Dunod 1969
6 J. L. Lions, "Problemes aux limites non homogenes applications" Dunod 1-, 1968
7 J. Y. Park, "On the existence of solutions of strongly damped wave equa-tions" 23 (23): 369-382, 2000
8 Z. Y. Zhang, "On solvability and stabilization of a class of hyperbolic hemivariational inequalities in elasticity" 54 (54): 297-314, 2011
9 K. Narasimha, "On global solutions of some degenerate quasilinear hyper-bolic equation with dissipative terms" 33 : 151-159, 1990
10 T. Matsuyama, "On global solutions and energy decay for the wave equa-tions of Kirchhoff type with nonlinear damping terms" 204 (204): 729-753, 1996
11 K. Ono, "On global solutions and blow-up of solutions of nonlinear Kirchhoff string with nonlinear dissipation" 216 : 321-342, 1997
12 K. Ono, "On global existence, asymtotic stability and blow-up of solutions for some degenerate nonlinear wave equations of Kirchhoff type" 20 : 151-177, 1997
13 M. M. Cavalcanti, "On existence and as-ymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions" 281 (281): 108-124, 2003
14 J. E. Lagnese, "Note on boundary stabilization of wave equations" 26 (26): 1250-1257, 1988
15 K. Narasimha, "Nonlinear vibration of an elastic string" 8 : 134-146, 1968
16 I. Segal, "Nonlinear semigroups" 78 : 339-364, 1963
17 Z. J. Yang, "Initial boundary value problem for a class of non-linear strongly damped wave equations" 26 (26): 1047-1066, 2003
18 I. Lasiecka, "Global sovability and uniform decays of solutions to quasilinear equation with nonlinear boundary conditions" 24 : 2069-2109, 1999
19 A. Arosio, "Global solutions of the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear Differential Equations and Their Applications" Pitman 6 : 1984
20 F. Gazzola, "Global solutions and finite time blow up for damped semilinear wave equations" 23 (23): 185-207, 2006
21 K. Ono, "Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings" 137 (137): 273-301, 1997
22 Z. Y. Zhang, "Global existence and uniform stabi-lization of a generalized dissipative Klein-Gordon equation type with boundary damping" 52 (52): 12-, 2011
23 Z. Y. Zhang, "Global existence and uniform decay for wave equation with dissipative term and boundary damping" 59 (59): 1003-1018, 2010
24 M. A. Rammaha, "Global existence and nonexistence for nonlinear wave equations with damping and source terms" 354 (354): 3621-3637, 2002
25 R. Pitts, "Global existence and non-existence theorems for nonlinear wave equations" 51 (51): 1479-1509, 2002
26 H. A. Levine, "Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly wave equation" 228 (228): 181-205, 1998
27 N. I. Karachalios, "Global existence and blow up results for some nonlinear wave equations on Rn" 6 (6): 155-174, 2001
28 K. Yosida, "Fuctional Analysis" Sringer-Verlag 1996
29 M. M. Cavalcanti, "Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping" 14 (14): 85-116, 2001
30 M. M. Cavalcanti, "Existence and uniform decay of solutions of a degenarate equation nonlinear boundary damping and boundary memory source term" 38 : 281-294, 1999
31 M. M. Cavalcanti, "Existence and exponential decay for a Kirchhoff-Carrier model with viscosity" 226 (226): 20-40, 1998
32 Z. Y. Zhang, "Existence and asymptotic behavior of solutions to generalized Kirchhoff equation" 19 : 57-70, 2012
33 Z. Y. Zhang, "Estimate on the dimension of global attractor for nonlinear dissipative Kirchhoff equation" 110 (110): 271-282, 2010
34 Z. Y. Zhang, "Central manifold for the elastic string with dissipative effect" 4 (4): 329-343, 2010
35 M. Aassila, "Asymptotic behavior of solutions to a quasilinear hyperbolic equation with nonlinear damping" 1998 (1998): 12-, 1998
A NOTE ON EXPONENTIAL ALMOST SURE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATION
HYBRID d-ARY TREES AND THEIR GENERALIZATION
THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE
MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.35 | 0.1 | 0.27 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.23 | 0.2 | 0.339 | 0.04 |