RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Speech and emotion recognition using a multi-output model

      한글로보기

      https://www.riss.kr/link?id=A108349121

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Voice language, the primary way of human communication, delivers not only verbal information but also emotional information through various characteristics such as voice intonation, height, and surrounding environment. Currently, many studies focus on...

      Voice language, the primary way of human communication, delivers not only verbal information but also emotional information through various characteristics such as voice intonation, height, and surrounding environment. Currently, many studies focus on grasping emotion and speech recognition on voice for human-computer interaction and are developing deep neural network models by extracting various frequency characteristics of speech. Representatives of these speech-based deep learning algorithms include speech recognition, namely speech-to-text or automatic speech recognition, and speech emotion recognition. The development of these two algorithms has been developed for a long time, but multi-output algorithms that process them in parallel at the same time are rare. This paper introduces a multi-output model that recognizes speech and emotion in one voice, thinking that simultaneously understanding language and emotion, which are the most critical information in a human voice, will significantly help human-computer interaction. This model confirmed that there was no significant difference between the training of the language and emotion recognition models separately, with a word error rate of 6.59% in the speech recognition section and an accuracy of 79.67% on average in the emotion recognition section.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. INTRODUCTION
      • II. RELATED WORK
      • A. SER (Speech Emotion Recognition)
      • B. ASR (Automatic Speech Recognition)
      • Abstract
      • I. INTRODUCTION
      • II. RELATED WORK
      • A. SER (Speech Emotion Recognition)
      • B. ASR (Automatic Speech Recognition)
      • III. PROPOSED METHOD
      • A. Feature Extraction
      • B. SER Section
      • C. ASR Section
      • IV. EXPERIMENT RESULT
      • V. CONCLUSION
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼