RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Design of an aerial combat guidance law using virtual pursuit point concept

      한글로보기

      https://www.riss.kr/link?id=A107478313

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>In this paper, a combat maneuvering guidance law for an unmanned combat aerial vehicle is presented, and X-Plane based nonlinear six-degrees-of-freedom combat simulation results are presented. For realizing practical implementation and good real-time performance, the guidance law is designed using the virtual pursuit point concept and a typical pure pursuit guidance law. The virtual pursuit points, which include virtual lag, pure, and lead points, are generated based on energy–maneuverability analysis for turn performance, weapon characteristics, and basic fighter maneuver principles of manned fighters. Furthermore, an algorithm is proposed for generating a single point using the virtual pursuit points and for determining the type of pursuit maneuver using the vehicle’s state-based probabilistic functions. The simulation results indicate that the proposed guidance law produces sensible maneuvers for close air-to-air engagement. The proposed methodology has the advantage of not only allowing wide-ranging combat maneuvers from high-g agile to delicate gunshot maneuvers but also performing tactical pursuit maneuvers in real time using the virtual pursuit point.</P>
      번역하기

      <P>In this paper, a combat maneuvering guidance law for an unmanned combat aerial vehicle is presented, and X-Plane based nonlinear six-degrees-of-freedom combat simulation results are presented. For realizing practical implementation and good r...

      <P>In this paper, a combat maneuvering guidance law for an unmanned combat aerial vehicle is presented, and X-Plane based nonlinear six-degrees-of-freedom combat simulation results are presented. For realizing practical implementation and good real-time performance, the guidance law is designed using the virtual pursuit point concept and a typical pure pursuit guidance law. The virtual pursuit points, which include virtual lag, pure, and lead points, are generated based on energy–maneuverability analysis for turn performance, weapon characteristics, and basic fighter maneuver principles of manned fighters. Furthermore, an algorithm is proposed for generating a single point using the virtual pursuit points and for determining the type of pursuit maneuver using the vehicle’s state-based probabilistic functions. The simulation results indicate that the proposed guidance law produces sensible maneuvers for close air-to-air engagement. The proposed methodology has the advantage of not only allowing wide-ranging combat maneuvers from high-g agile to delicate gunshot maneuvers but also performing tactical pursuit maneuvers in real time using the virtual pursuit point.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼