We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, t...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O119808450
2019년
-
0749-159X
1098-2426
SCIE;SCOPUS
학술저널
699-715 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, t...
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(n log n) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi‐circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods.
A fourth‐order H1‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation
A study on a second order finite difference scheme for fractional advection–diffusion equations