The National Health Interview Survey (NHIS) is one of the surveys used to assess the health status of the US population. One indicator of the nation's health is the total number of doctor visits made by the household members in the past year, There is...
The National Health Interview Survey (NHIS) is one of the surveys used to assess the health status of the US population. One indicator of the nation's health is the total number of doctor visits made by the household members in the past year, There is a substantial nonresponse among the sampled households, and the main issue we address here is that the nonrespones mechanism should not be ignored because respondents and nonrespondents differ. It is standard practice to summarize the number of doctor visits by the binary variable of no doctor visit versus at least one doctor visit by a household for each of the fifty states and the District of Columbia. We consider a nonignorable nonresponse model that expresses uncertainty about ignorability through the ratio of odds of a household doctor visit among respondents to the odds of doctor visit among all households. This is a hierarchical model in which a nonignorable nonresponse model is centered on an ignorable nonresponse model. Another feature of this model is that it permits us to "borrow strength" across states as in small area estimation; this helps because some of the parameters are weakly identified. However, for simplicity we assume that the hyperparameters are fixed but unknown, and these hyperparameters are estimated by the EM algorithm; thereby making our method Bayes empirical Bayes. Our main result is that for some of the states the nonresponse mechanism can be considered non-ignorable, and that 95% credible intervals of the probability of a household doctor visit and the probability that a household responds shed important light on the NHIS.