RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions

      한글로보기

      https://www.riss.kr/link?id=A107554660

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Yield mapping for tree crops by mechanical harvesting requires automatic detection and counting of fruits in tree canopy. However, partial occlusion, shape irregularity, varying illumination, multiple sizes and similarity with the background make frui...

      Yield mapping for tree crops by mechanical harvesting requires automatic detection and counting of fruits in tree canopy. However, partial occlusion, shape irregularity, varying illumination, multiple sizes and similarity with the background make fruit identification a very difficult task to achieve. Therefore, immature green citrus-fruit detection within a green canopy is a challenging task due to all the above-mentioned problems. A novel algorithmic technique was used to detect immature green citrus fruit in tree canopy under natural outdoor conditions. Shape analysis and texture classification were two integral parts of the algorithm. Shape analysis was conducted to detect as many fruits as possible. Texture classification by a support vector machine (SVM), Canny edge detection combined with a graph-based connected component algorithm and Hough line detection, were used to remove false positives. Next, keypoints were detected using a scale invariant feature transform (SIFT) algorithm and to further remove false positives. A majority voting scheme was implemented to make the algorithm more robust. The algorithm was able to accurately detect and count 80.4% of citrus fruit in a validation set of images acquired from a citrus grove under natural outdoor conditions. The algorithm could be further improved to provide growers early yield estimation so that growers can manage grove more efficiently on a site-specific basis to increase yield and profit.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼