RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Cathodic Electrodeposition of Ni−Mo on Semiconducting NiFe2O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media

      한글로보기

      https://www.riss.kr/link?id=O120730614

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        1864-5631

      • Online ISSN

        1864-564X

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        1374-1381   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni−Mo layers on NiFe2O4 substrates, deposited by spin coating on F:SnO2‐glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe2O4. Bare NiFe2O4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni−Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to −2.1 mA cm−2 at −0.3 V vs. RHE were obtained for Ni−Mo/NiFe2O4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe2O4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe2O4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni−Mo/NiFe2O4 photocathodes.
      Finding Ni−Mo: NiFe2O4 photocathodes have been tested for photoelectrochemical hydrogen evolution, but were found to be unstable. In this study, a metallic protection layer is applied with a simple electrodeposition synthesis. Ni−Mo, when used as a metallic protective layer, was also found to be catalytically active towards hydrogen evolution.
      번역하기

      Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni−Mo layers on NiFe2O4 substrates, deposited by spin coating on F:SnO2‐glass. Analysis confirmed the formation of two separate layers, without significant reduction...

      Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni−Mo layers on NiFe2O4 substrates, deposited by spin coating on F:SnO2‐glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe2O4. Bare NiFe2O4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni−Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to −2.1 mA cm−2 at −0.3 V vs. RHE were obtained for Ni−Mo/NiFe2O4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe2O4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe2O4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni−Mo/NiFe2O4 photocathodes.
      Finding Ni−Mo: NiFe2O4 photocathodes have been tested for photoelectrochemical hydrogen evolution, but were found to be unstable. In this study, a metallic protection layer is applied with a simple electrodeposition synthesis. Ni−Mo, when used as a metallic protective layer, was also found to be catalytically active towards hydrogen evolution.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼