RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum

      한글로보기

      https://www.riss.kr/link?id=O116606409

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        0006-3592

      • Online ISSN

        1097-0290

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        1842-1854   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Ganoderic acid (GA), a triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, possesses antitumor and other significant pharmacological activities. Owing to the notorious difficulty and immaturity in genetic manipulation of higher fungi as well as their slow growth, biosynthesis of GAs in a heterologous host is an attractive alternative for their efficient bioproduction. In this study, using Saccharomyces cerevisiae as a host, we did a systematic screening of cytochrome P450 monooxygenase (CYP450) gene candidates from G. lucidum, which may be responsible for the GA biosynthesis from lanosterol but have not been functionally characterized. As a result, overexpression of a CYP450 gene cyp5150l8 was firstly found to produce an antitumor GA, 3‐hydroxy‐lanosta‐8, 24‐dien‐26 oic acid (HLDOA) in S. cerevisiae, as confirmed by HPLC, LC‐MS and NMR. A final titer of 14.5 mg/L of HLDOA was obtained at 120 hr of the yeast fermentation. Furthermore, our in vitro enzymatic experiments indicate that CYP5150L8 catalyzes a three‐step biotransformation of lanosterol at C‐26 to synthesize HLDOA. To our knowledge, this is the first report on the heterologous biosynthesis of GAs. The results will be helpful to the GA biosynthetic pathway elucidation and to future optimization of heterologous cell factories for GA production.
      Biosynthesis from lanosterol to ganoderic acids (bioactive triterpenoids) has been an unresolved puzzling question for several decades, and discovery of the functional genes remains extremely challenging. The SJTU group did a systematic screening of CYP450 genes from traditional Chinese medicinal mushroom Ganoderma lucidum, and a gene responsible for converting lanosterol into a ganoderic acid was for the first time discovered. The CYP5150L8 catalyzed three‐step oxidations of lanosterol to 3‐hydroxy‐lanosta‐8, 24‐dien‐26 oic acid (HLDOA) in a synthetic biology chassis Saccharomyces cerevisiae.
      번역하기

      Ganoderic acid (GA), a triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, possesses antitumor and other significant pharmacological activities. Owing to the notorious difficulty and immaturity in genetic manipulation ...

      Ganoderic acid (GA), a triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, possesses antitumor and other significant pharmacological activities. Owing to the notorious difficulty and immaturity in genetic manipulation of higher fungi as well as their slow growth, biosynthesis of GAs in a heterologous host is an attractive alternative for their efficient bioproduction. In this study, using Saccharomyces cerevisiae as a host, we did a systematic screening of cytochrome P450 monooxygenase (CYP450) gene candidates from G. lucidum, which may be responsible for the GA biosynthesis from lanosterol but have not been functionally characterized. As a result, overexpression of a CYP450 gene cyp5150l8 was firstly found to produce an antitumor GA, 3‐hydroxy‐lanosta‐8, 24‐dien‐26 oic acid (HLDOA) in S. cerevisiae, as confirmed by HPLC, LC‐MS and NMR. A final titer of 14.5 mg/L of HLDOA was obtained at 120 hr of the yeast fermentation. Furthermore, our in vitro enzymatic experiments indicate that CYP5150L8 catalyzes a three‐step biotransformation of lanosterol at C‐26 to synthesize HLDOA. To our knowledge, this is the first report on the heterologous biosynthesis of GAs. The results will be helpful to the GA biosynthetic pathway elucidation and to future optimization of heterologous cell factories for GA production.
      Biosynthesis from lanosterol to ganoderic acids (bioactive triterpenoids) has been an unresolved puzzling question for several decades, and discovery of the functional genes remains extremely challenging. The SJTU group did a systematic screening of CYP450 genes from traditional Chinese medicinal mushroom Ganoderma lucidum, and a gene responsible for converting lanosterol into a ganoderic acid was for the first time discovered. The CYP5150L8 catalyzed three‐step oxidations of lanosterol to 3‐hydroxy‐lanosta‐8, 24‐dien‐26 oic acid (HLDOA) in a synthetic biology chassis Saccharomyces cerevisiae.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼