RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Impacts of the Arctic/High-latitude Climate Variability on the Extreme Events in East Asia

      한글로보기

      https://www.riss.kr/link?id=T16823600

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study aims to improve the understanding of the impact of climate variability due to recent rapid Arctic warming in the Arctic and high-latitudes on extreme events in East Asia as well as to suggest new teleconnection pathways of the Rossby wave. In particular, this study focused on extreme summer heat waves and severe winter PM10 pollution, which are predominant in East Asia.
      In the first chapter, PM10 concentration data that were continuously collected in South Korea during mid-winter over 21 years (2001–2021) were used to investigate the characteristics of PM10 variability and the mechanisms of large-scale atmospheric circulation patterns affecting severe PM10 pollution. Winter PM10 concentrations were classified into three PM10 concentration groups (low, high, and extremely high) based on the median and 95th percentile. An investigation of the associated atmospheric circulation patterns for each group showed that the low and high PM10 groups were primarily associated with synoptic-scale weather patterns at the East Asian winter monsoon scale. In contrast, the atmospheric circulation pattern associated with the extremely high (EH)-PM10 group was closely related to the large-scale atmospheric circulation pattern of the Eurasian continental scale. The results of the K-means clustering analysis of the EH-PM10 cases were categorized into two distinct large-scale teleconnection patterns. Cluster 1 showed a wave train pattern originating from the North Atlantic (NA) Ocean and propagating across the Eurasian continent to the Korean Peninsula. Cluster 2 showed a wave-like pattern from the Barents-Kara Sea (BKS) in the Arctic to the Korean Peninsula. The strongly developed high-pressure anomalies in the NA Ocean and BKS were mainly induced by vorticity advection in the upper troposphere, and they triggered rapidly developed large-scale atmospheric circulation patterns, approximately four days before the EH-PM10 events. The propagation of Rossby wave energy originating from the NA Ocean and BKS caused a high-pressure anomaly over the Korean Peninsula and weakened the lower troposphere pressure system in East Asia, thereby weakening the atmospheric ventilation effect. Simultaneously, PM10 concentration inflow to the Korean Peninsula from East China and the Gobi Desert, coupled with stagnant meteorological conditions, have resulted in a drastic increase in PM10 concentrations in Korea. In summary, large-scale atmospheric circulation patterns triggered by the NA Ocean and BKS weakened the ventilation effect around the Korean Peninsula and induced the advection of PM10 concentrations from neighboring regions to the Korean Peninsula, resulting in favorable atmospheric conditions for EH-PM10 events. This study suggests that two representative large-scale teleconnection pathways originating from the NA Ocean and BKS cause the EH-PM10 events in Korea during mid-winter.
      In the second chapter of this study, ERA-5 reanalysis data were used for 42 years (1979–2020) to investigate the characteristics of the East Asian heat waves (EAHWs) and their teleconnection mechanisms with the associated Arctic-Siberian Plain (ASP) warming. The results showed that EAHWs, which overlapped with the increasing linear trend and interannual variability, occurred strongly and frequently in recent periods. The heat wave days in East Asia with a north-south dipole pattern were determined to be closely related to the wave-like teleconnection pattern originating from the ASP. The strongly developed high-pressure anomalies in the upper troposphere of the ASP are majorly induced by vorticity advection and significantly increased shortwave radiation. The increase in subsidence and insolation due to the high-pressure anomaly contributed substantially to the increase in air temperature in the ASP, and a large amount of radiative energy on the surface was primarily released as longwave radiation and latent heat flux. At the ASP surface, land–atmosphere interaction due to positive water vapor feedback was found to amplify the thermal high pressure and upward propagation of the Rossby wave energy. Consequently, the Rossby wave energy amplified in the ASP propagates along the upper tropospheric pathway to East Asia, triggering atmospheric circulation patterns favorable for the development of EAHWs in summer. While numerous previous studies have majorly explained the causes of EAHWs in terms of teleconnection patterns in the Pacific-Japan and circumglobal teleconnection patterns, this study suggests new teleconnection pathways originating in the Arctic/high-latitudes for EAHWs.
      Our findings improve the understanding of the large-scale teleconnection mechanisms between Arctic/high-latitude climate variability and winter EH-PM10 events in South Korea and summer heat waves in East Asia and provide representative teleconnection pathways of the Rossby wave in the Northern Hemisphere. This study contributes to the prediction and future perspective of winter and summer extreme events in East Asia to reduce human health risks as well as social and economic damage.
      번역하기

      This study aims to improve the understanding of the impact of climate variability due to recent rapid Arctic warming in the Arctic and high-latitudes on extreme events in East Asia as well as to suggest new teleconnection pathways of the Rossby wave. ...

      This study aims to improve the understanding of the impact of climate variability due to recent rapid Arctic warming in the Arctic and high-latitudes on extreme events in East Asia as well as to suggest new teleconnection pathways of the Rossby wave. In particular, this study focused on extreme summer heat waves and severe winter PM10 pollution, which are predominant in East Asia.
      In the first chapter, PM10 concentration data that were continuously collected in South Korea during mid-winter over 21 years (2001–2021) were used to investigate the characteristics of PM10 variability and the mechanisms of large-scale atmospheric circulation patterns affecting severe PM10 pollution. Winter PM10 concentrations were classified into three PM10 concentration groups (low, high, and extremely high) based on the median and 95th percentile. An investigation of the associated atmospheric circulation patterns for each group showed that the low and high PM10 groups were primarily associated with synoptic-scale weather patterns at the East Asian winter monsoon scale. In contrast, the atmospheric circulation pattern associated with the extremely high (EH)-PM10 group was closely related to the large-scale atmospheric circulation pattern of the Eurasian continental scale. The results of the K-means clustering analysis of the EH-PM10 cases were categorized into two distinct large-scale teleconnection patterns. Cluster 1 showed a wave train pattern originating from the North Atlantic (NA) Ocean and propagating across the Eurasian continent to the Korean Peninsula. Cluster 2 showed a wave-like pattern from the Barents-Kara Sea (BKS) in the Arctic to the Korean Peninsula. The strongly developed high-pressure anomalies in the NA Ocean and BKS were mainly induced by vorticity advection in the upper troposphere, and they triggered rapidly developed large-scale atmospheric circulation patterns, approximately four days before the EH-PM10 events. The propagation of Rossby wave energy originating from the NA Ocean and BKS caused a high-pressure anomaly over the Korean Peninsula and weakened the lower troposphere pressure system in East Asia, thereby weakening the atmospheric ventilation effect. Simultaneously, PM10 concentration inflow to the Korean Peninsula from East China and the Gobi Desert, coupled with stagnant meteorological conditions, have resulted in a drastic increase in PM10 concentrations in Korea. In summary, large-scale atmospheric circulation patterns triggered by the NA Ocean and BKS weakened the ventilation effect around the Korean Peninsula and induced the advection of PM10 concentrations from neighboring regions to the Korean Peninsula, resulting in favorable atmospheric conditions for EH-PM10 events. This study suggests that two representative large-scale teleconnection pathways originating from the NA Ocean and BKS cause the EH-PM10 events in Korea during mid-winter.
      In the second chapter of this study, ERA-5 reanalysis data were used for 42 years (1979–2020) to investigate the characteristics of the East Asian heat waves (EAHWs) and their teleconnection mechanisms with the associated Arctic-Siberian Plain (ASP) warming. The results showed that EAHWs, which overlapped with the increasing linear trend and interannual variability, occurred strongly and frequently in recent periods. The heat wave days in East Asia with a north-south dipole pattern were determined to be closely related to the wave-like teleconnection pattern originating from the ASP. The strongly developed high-pressure anomalies in the upper troposphere of the ASP are majorly induced by vorticity advection and significantly increased shortwave radiation. The increase in subsidence and insolation due to the high-pressure anomaly contributed substantially to the increase in air temperature in the ASP, and a large amount of radiative energy on the surface was primarily released as longwave radiation and latent heat flux. At the ASP surface, land–atmosphere interaction due to positive water vapor feedback was found to amplify the thermal high pressure and upward propagation of the Rossby wave energy. Consequently, the Rossby wave energy amplified in the ASP propagates along the upper tropospheric pathway to East Asia, triggering atmospheric circulation patterns favorable for the development of EAHWs in summer. While numerous previous studies have majorly explained the causes of EAHWs in terms of teleconnection patterns in the Pacific-Japan and circumglobal teleconnection patterns, this study suggests new teleconnection pathways originating in the Arctic/high-latitudes for EAHWs.
      Our findings improve the understanding of the large-scale teleconnection mechanisms between Arctic/high-latitude climate variability and winter EH-PM10 events in South Korea and summer heat waves in East Asia and provide representative teleconnection pathways of the Rossby wave in the Northern Hemisphere. This study contributes to the prediction and future perspective of winter and summer extreme events in East Asia to reduce human health risks as well as social and economic damage.

      더보기

      국문 초록 (Abstract)

      이 연구는 최근 급격하게 진행되는 북극 온난화로 인해 급변하는 북극 및 고위도 지역의 대기 변동성이 동아시아 지역에서 발생하는 극한 현상에 미치는 영향과 발생 기작에 대한 이해를 높이고, 새로운 로스비 파동의 이동 경로를 제시하는 것을 목표로 한다. 특히, 이 연구에서는 동아시아에서 주로 발생하는 여름철 극한 폭염 현상과 겨울철 초고농도 PM10 오염의 발생 기작을 중점적으로 분석하였다.
      이 연구의 첫번째 챕터에서는 지난 21년 간 (2001−2021년) 겨울철 한반도에서 지속적으로 수집된 PM10 농도 자료를 이용하여 PM10 농도의 변동 특성과 극심한 PM10 오염에 영향을 미치는 대규모 대기 순환 패턴의 발생 기작을 제시하였다. 겨울철 PM10 농도는 중앙값과 95분위수를 기준으로 3가지의 PM10 농도 그룹 (저농도, 고농도, 초고농도)으로 분류되었다. 각 농도 그룹별 관련된 대기 순환 패턴을 확인한 결과, 저농도와 고농도 PM10 그룹은 주로 동아시아 겨울 몬순 규모의 종관 규모의 대기 순환 패턴과 관련되어 있음을 확인하였다. 한편, 초고농도 PM10 그룹과 관련된 대기 순환 패턴은 종관 규모를 넘어서는 유라시아 대륙 규모의 대규모 대기 순환 패턴과 밀접하게 관련이 있음을 확인하였다. 대규모 대기 순환과 관련된 초고농도 PM10 사례의 K-means 군집 분석 결과는 두 가지의 뚜렷한 대규모 원격 상관 패턴으로 분류되었다. 첫 번째 군집의 대기 순환 패턴은 북대서양에서 기원하는 파동 열 형태의 대기 순환 패턴이 유라시아 대륙을 거쳐 한반도까지 발달하였다. 두 번째 군집은 북극 바렌츠−카라해부터 한반도까지 이어지는 파동 열 형태의 원격 상관 패턴과 관련되어 있는 것으로 나타났다. 북대서양과 바렌츠−카라해에서 강하게 발달하는 고기압성 편차는 주로 대류권 상층에서 음의 와도 이류에 의해 유도되는 것으로 나타났으며, 이로 인해 촉발되는 대규모 대기 순환 패턴은 초고농도 PM10 사례 발생 약 4일 전부터 급격하게 발달하였다. 북대서양 및 북극 바렌츠−카라해에서 촉발된 로스비 파동 에너지의 전파는 한반도 상공으로 고기압성 편차와 북풍 계열의 바람의 약화를 유도하여, 대기 환기 효과를 약화시키는 것으로 분석되었다. 이와 동시에 동중국과 고비 사막지역에서 한반도 지역으로 이류되는 PM10 농도는 정체된 기상 조건과 함께 한반도의 PM10 농도의 급격한 증가를 야기하였다. 이 연구는 북대서양 및 북극 바렌츠−카라해에서 촉발되는 대규모 대기 순환 패턴이 한반도 지역의 대기 환기 효과를 약화 시키고, 인접한 지역에서 한반도로 PM10 농도의 이류를 유도하여 약 4일 이내에 초고농도 PM10 오염을 야기하는 것을 확인하였다. 요약하면, 겨울철 한반도에서 발생하는 초고농도 PM10 오염은 북대서양 및 북극 바렌츠−카라해에서 각각 기원하는 대규모 원격 상관 패턴에 의해 주로 발생한다.
      이 연구의 두번째 챕터에서는 지난 1979년부터 2020년 (총 42년) 동안의 재분석 자료를 사용하여 동아시아 폭염 발생 특성을 확인하였으며, 이와 관련된 북극−시베리아 평원 (Arctic−Siberian Plain; ASP)의 온난화와 관련된 원격 상관 메커니즘에 대하여 조사하였다. 연구 결과, 최근 발생하는 동아시아 폭염은 강한 선형 증가 추세와 내부 변동성이 서로 중첩되어 강하고 빈번하게 발생하는 것으로 분석되었다. 특히, 남북 쌍극자 패턴의 동아시아 폭염은 ASP에서 기원하는 파동 열 형태의 대규모 대기 순환 패턴과 밀접한 관련성이 나타났다. ASP의 대류권 상층에서 강하게 발달하는 고기압성 편차는 주로 와도 이류에 의해 유도되며, 고기압성 편차로 인한 하강 기류와 태양 복사 에너지의 증가는 ASP의 기온 증가를 유도하고, 그 결과 지표 증발을 가속화 시킨다. ASP 에서 증가된 수증기는 양의 수증기 되먹임에 의한 지면−대기 상호 작용으로 열돔 및 열적 고기압의 발달과 로스비 파동을 증폭시키는 것으로 나타났다. 요약하면, ASP 지역에서 열돔에 의해 증폭된 로스비 파동은 대류권 상층 경로를 따라 동아시아 지역으로 전파되어 여름철 동아시아 열파 발생에 유리한 대기 순환 패턴을 촉발하는 것으로 분석되었다.
      본 연구에서는 북극 및 고위도의 기후 변동성과 겨울철 한반도 초고농도 PM10 오염 및 여름철 동아시아 폭염 간의 대규모 원격 상관 메커니즘에 대한 이해를 높이고, 로스비 파동의 대표 영향 경로를 제시한다. 이 연구의 결과는 향후 겨울철과 여름철 동아시아에서 발생하는 극한 현상의 예측과 미래 전망에 활용하여 인체 건강 및 사회・경제적 피해를 줄이는데 기여할 것으로 사료된다.
      번역하기

      이 연구는 최근 급격하게 진행되는 북극 온난화로 인해 급변하는 북극 및 고위도 지역의 대기 변동성이 동아시아 지역에서 발생하는 극한 현상에 미치는 영향과 발생 기작에 대한 이해를 높...

      이 연구는 최근 급격하게 진행되는 북극 온난화로 인해 급변하는 북극 및 고위도 지역의 대기 변동성이 동아시아 지역에서 발생하는 극한 현상에 미치는 영향과 발생 기작에 대한 이해를 높이고, 새로운 로스비 파동의 이동 경로를 제시하는 것을 목표로 한다. 특히, 이 연구에서는 동아시아에서 주로 발생하는 여름철 극한 폭염 현상과 겨울철 초고농도 PM10 오염의 발생 기작을 중점적으로 분석하였다.
      이 연구의 첫번째 챕터에서는 지난 21년 간 (2001−2021년) 겨울철 한반도에서 지속적으로 수집된 PM10 농도 자료를 이용하여 PM10 농도의 변동 특성과 극심한 PM10 오염에 영향을 미치는 대규모 대기 순환 패턴의 발생 기작을 제시하였다. 겨울철 PM10 농도는 중앙값과 95분위수를 기준으로 3가지의 PM10 농도 그룹 (저농도, 고농도, 초고농도)으로 분류되었다. 각 농도 그룹별 관련된 대기 순환 패턴을 확인한 결과, 저농도와 고농도 PM10 그룹은 주로 동아시아 겨울 몬순 규모의 종관 규모의 대기 순환 패턴과 관련되어 있음을 확인하였다. 한편, 초고농도 PM10 그룹과 관련된 대기 순환 패턴은 종관 규모를 넘어서는 유라시아 대륙 규모의 대규모 대기 순환 패턴과 밀접하게 관련이 있음을 확인하였다. 대규모 대기 순환과 관련된 초고농도 PM10 사례의 K-means 군집 분석 결과는 두 가지의 뚜렷한 대규모 원격 상관 패턴으로 분류되었다. 첫 번째 군집의 대기 순환 패턴은 북대서양에서 기원하는 파동 열 형태의 대기 순환 패턴이 유라시아 대륙을 거쳐 한반도까지 발달하였다. 두 번째 군집은 북극 바렌츠−카라해부터 한반도까지 이어지는 파동 열 형태의 원격 상관 패턴과 관련되어 있는 것으로 나타났다. 북대서양과 바렌츠−카라해에서 강하게 발달하는 고기압성 편차는 주로 대류권 상층에서 음의 와도 이류에 의해 유도되는 것으로 나타났으며, 이로 인해 촉발되는 대규모 대기 순환 패턴은 초고농도 PM10 사례 발생 약 4일 전부터 급격하게 발달하였다. 북대서양 및 북극 바렌츠−카라해에서 촉발된 로스비 파동 에너지의 전파는 한반도 상공으로 고기압성 편차와 북풍 계열의 바람의 약화를 유도하여, 대기 환기 효과를 약화시키는 것으로 분석되었다. 이와 동시에 동중국과 고비 사막지역에서 한반도 지역으로 이류되는 PM10 농도는 정체된 기상 조건과 함께 한반도의 PM10 농도의 급격한 증가를 야기하였다. 이 연구는 북대서양 및 북극 바렌츠−카라해에서 촉발되는 대규모 대기 순환 패턴이 한반도 지역의 대기 환기 효과를 약화 시키고, 인접한 지역에서 한반도로 PM10 농도의 이류를 유도하여 약 4일 이내에 초고농도 PM10 오염을 야기하는 것을 확인하였다. 요약하면, 겨울철 한반도에서 발생하는 초고농도 PM10 오염은 북대서양 및 북극 바렌츠−카라해에서 각각 기원하는 대규모 원격 상관 패턴에 의해 주로 발생한다.
      이 연구의 두번째 챕터에서는 지난 1979년부터 2020년 (총 42년) 동안의 재분석 자료를 사용하여 동아시아 폭염 발생 특성을 확인하였으며, 이와 관련된 북극−시베리아 평원 (Arctic−Siberian Plain; ASP)의 온난화와 관련된 원격 상관 메커니즘에 대하여 조사하였다. 연구 결과, 최근 발생하는 동아시아 폭염은 강한 선형 증가 추세와 내부 변동성이 서로 중첩되어 강하고 빈번하게 발생하는 것으로 분석되었다. 특히, 남북 쌍극자 패턴의 동아시아 폭염은 ASP에서 기원하는 파동 열 형태의 대규모 대기 순환 패턴과 밀접한 관련성이 나타났다. ASP의 대류권 상층에서 강하게 발달하는 고기압성 편차는 주로 와도 이류에 의해 유도되며, 고기압성 편차로 인한 하강 기류와 태양 복사 에너지의 증가는 ASP의 기온 증가를 유도하고, 그 결과 지표 증발을 가속화 시킨다. ASP 에서 증가된 수증기는 양의 수증기 되먹임에 의한 지면−대기 상호 작용으로 열돔 및 열적 고기압의 발달과 로스비 파동을 증폭시키는 것으로 나타났다. 요약하면, ASP 지역에서 열돔에 의해 증폭된 로스비 파동은 대류권 상층 경로를 따라 동아시아 지역으로 전파되어 여름철 동아시아 열파 발생에 유리한 대기 순환 패턴을 촉발하는 것으로 분석되었다.
      본 연구에서는 북극 및 고위도의 기후 변동성과 겨울철 한반도 초고농도 PM10 오염 및 여름철 동아시아 폭염 간의 대규모 원격 상관 메커니즘에 대한 이해를 높이고, 로스비 파동의 대표 영향 경로를 제시한다. 이 연구의 결과는 향후 겨울철과 여름철 동아시아에서 발생하는 극한 현상의 예측과 미래 전망에 활용하여 인체 건강 및 사회・경제적 피해를 줄이는데 기여할 것으로 사료된다.

      더보기

      목차 (Table of Contents)

      • ABSTRACT I
      • 1. Overview 1
      • 2. Data and methods 4
      • 1. Data 4
      • 2. Methods 5
      • ABSTRACT I
      • 1. Overview 1
      • 2. Data and methods 4
      • 1. Data 4
      • 2. Methods 5
      • 1) Statistical methods 5
      • 2) Wave activity flux 5
      • 3) Budget analysis of the quasi-geostrophic geopotential tendency equation 6
      • 4) Linear baroclinic model experiments 8
      • 3. Impact of the Arctic/high-latitude climate variability on the severe winter PM10 pollution in Korea 10
      • 1. Introduction 10
      • 2. Data and methods 14
      • 1) Observational data of PM10 concentration 14
      • 2) Reanalysis data of PM10 concentration 16
      • 3) K-means clustering 17
      • 3. Results 18
      • 1) Characteristic of the PM10 concentration in Korea. 18
      • 2) Atmospheric circulation patterns related to the PM10 concentration in Korea. 23
      • 3) Classification of the extremely high cases of PM10 concentration in Korea. 27
      • 4) Mechanisms of large-scale teleconnection patterns favorable to the extremely high PM10 cases. 47
      • 4. Summary 54
      • 4. Impact of the Arctic/high-latitude climate variability on the summer extreme heat waves in East Asia 57
      • 1. Introduction 57
      • 2. Data and methods 61
      • 1) Reanalysis data 61
      • 2) Definition of heat wave days in East Asia 61
      • 3) Empirical orthogonal function analysis 62
      • 4) Singular value decomposition analysis 62
      • 3. Results 65
      • 1) Characteristics of East Asian heat waves. 65
      • 2) Investigation of teleconnection pattern between the Northern Hemisphere atmospheric circulation and East Asian heat waves. 69
      • 3) Physical processes of Arctic-Siberian Plain warming related to the East Asian heat waves. 81
      • 4) Teleconnection mechanisms of the favorable atmospheric circulation to the East Asian heat waves. 94
      • 4. Summary and discussion 100
      • 5. Conclusions 103
      • 국 문 초 록 122
      더보기

      참고문헌 (Reference) 논문관계도

      1 Coauthors, Hersbach, H., "The ERA5 global reanalysis", 146, 1999–2049, https://doi. org/10.1002/qj.3803, 2020

      2 L. V. Alexander, Perkins, S. E., "On the measurement of heat waves", 26, 4500–4517, https://doi. org/10.1175/JCLI-D-12-00383.1, 2013

      3 D. O. Staley, Holton, J. R., "An Introduction to Dynamic Meteorology", 41, 752–754, https://doi. org/https://doi. org/10.1119/1.1987371, 1973

      4 D. Chen, S. W. Son., Jung, M. Il, H. Kim, "Tropical modulation of East Asia air pollution", 13, https://doi. org/10.1038/s41467-022-33281-1, 2022

      5 A. C. Clement, Y. Kushnir, M. B. Blumenthal, M. A. Cane, Kaplan, A., B. Rajagopalan, "Analyses of global sea surface temperature 1856-1991", 103, 18567–18589, https://doi. org/10.1029/97JC01736, 1998

      6 K. J. Ha, T. W. Park, Seo, Y. W., "Feedback attribution to dry heatwaves over East Asia", 16, https://doi. org/10.1088/1748-9326/abf18f, 2021

      7 B. K. Moon, Wie, J., "ENSO-related PM10 variability on the Korean Peninsula", 167, 426–433, https://doi. org/10.1016/j. atmosenv.2017.08.052, 2017

      8 D. H. Cha, Yoon, D., Y. Choi, S. Y. Jun, M. I. Lee, K. H. Min, J. Kim, "Recent changes in heatwave characteristics over Korea", 55, 1685–1696, https://doi. org/10.1007/s00382-020-05420-1, 2020

      9 Q. Shao, Z. Yu, Z. Chen, Y. Huang, Wei, J., W. Xing, W. Wang, "Heat Wave Variations Across China Tied to Global SST Modes", Atmospheres, 125, https://doi. org/10.1029/2019JD031612, 2020

      10 B. Wang, Ding, Q., "Circumglobal teleconnection in the Northern Hemisphere summer", 18, 3483–3505, https://doi. org/10.1175/JCLI3473.1, 2005

      1 Coauthors, Hersbach, H., "The ERA5 global reanalysis", 146, 1999–2049, https://doi. org/10.1002/qj.3803, 2020

      2 L. V. Alexander, Perkins, S. E., "On the measurement of heat waves", 26, 4500–4517, https://doi. org/10.1175/JCLI-D-12-00383.1, 2013

      3 D. O. Staley, Holton, J. R., "An Introduction to Dynamic Meteorology", 41, 752–754, https://doi. org/https://doi. org/10.1119/1.1987371, 1973

      4 D. Chen, S. W. Son., Jung, M. Il, H. Kim, "Tropical modulation of East Asia air pollution", 13, https://doi. org/10.1038/s41467-022-33281-1, 2022

      5 A. C. Clement, Y. Kushnir, M. B. Blumenthal, M. A. Cane, Kaplan, A., B. Rajagopalan, "Analyses of global sea surface temperature 1856-1991", 103, 18567–18589, https://doi. org/10.1029/97JC01736, 1998

      6 K. J. Ha, T. W. Park, Seo, Y. W., "Feedback attribution to dry heatwaves over East Asia", 16, https://doi. org/10.1088/1748-9326/abf18f, 2021

      7 B. K. Moon, Wie, J., "ENSO-related PM10 variability on the Korean Peninsula", 167, 426–433, https://doi. org/10.1016/j. atmosenv.2017.08.052, 2017

      8 D. H. Cha, Yoon, D., Y. Choi, S. Y. Jun, M. I. Lee, K. H. Min, J. Kim, "Recent changes in heatwave characteristics over Korea", 55, 1685–1696, https://doi. org/10.1007/s00382-020-05420-1, 2020

      9 Q. Shao, Z. Yu, Z. Chen, Y. Huang, Wei, J., W. Xing, W. Wang, "Heat Wave Variations Across China Tied to Global SST Modes", Atmospheres, 125, https://doi. org/10.1029/2019JD031612, 2020

      10 B. Wang, Ding, Q., "Circumglobal teleconnection in the Northern Hemisphere summer", 18, 3483–3505, https://doi. org/10.1175/JCLI3473.1, 2005

      11 J.-H. Koo, Zou, Y., Y. Zhang, Y. Wang, "Arctic sea ice, Eurasia snow, and extreme winter haze in China", 3, https://doi. org/10.1126/sciadv.1602751, 2017

      12 Coauthors, Overland, J. E., "Nonlinear response of mid-latitude weather to the changing Arctic", 6, 992–999, https://doi. org/10.1038/nclimate3121, 2016

      13 Vihma, T., "Effects of Arctic Sea Ice Decline on Weather and Climate: A Review", 35, 1175–1214, https://doi. org/10.1007/s10712-014-9284-0, 2014

      14 M. Wang, Overland, J. E., "Recent extreme arctic temperatures are due to a split polar vortex", 29, 5609–5616, https://doi. org/10.1175/JCLI-D-16-0320.1, 2016

      15 J. H. Jeong, X. Zhang, T. Shim, S. W. Son, S. K. Min, S. J. Kim, Kim, B. M., J. H. Yoon, "Weakening of the stratospheric polar vortex by Arctic sea-ice loss", 5, 1–8, https://doi. org/10.1038/ncomms5646., 2014

      16 J. A. Francis, Wu, B., "Summer Arctic cold anomaly dynamically linked to East Asian heat waves", 32, 1137–1150, https://doi. org/10.1175/JCLI-D-18-0370.1, 2019

      17 B. Dong, Su, Q., "Recent decadal changes in heat waves over China: Drivers and mechanisms", 32, 4215–4234, https://doi. org/10.1175/JCLI-D-18-0479.1, 2019

      18 Krishnamurthy, L., V. Krishnamurthy, "Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole", 46, 2269–2285, https://doi. org/10.1007/s00382-015-2701-3, 2016

      19 Coumou, D., S. Wang, S. Vavrus, L. Wang, G. Di Capua, "The influence of Arctic amplification on mid-latitude summer circulation", 9, https://doi. org/10.1038/s41467-018-05256-8, 2018

      20 E. Hanna, T. Vihma, S. J. Kim, R. Hall, Overland, J., J. A. Francis, "The melting arctic and midlatitude weather patterns: Are they connected?", 28, 7917–7932, https://doi. org/10.1175/JCLI-D-14-00822.1, 2015

      21 Bretherton, C. S., J. M. Wallace, C. Smith, "An Intercomparison of Methods for Finding Coupled Patterns in Climate Data", 5, 541–560, https://doi. org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0. CO;2, 1992

      22 Honda, M., S. Yamane, J. Inoue, "Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters", 36, https://doi. org/10.1029/2008GL037079, 2009

      23 J. Han, Zhou, F., R. Zhang, "Influences of the east asian summer rainfall on circumglobal teleconnection", 33, 5213–5221, https://doi. org/10.1175/JCLID-19-0325.1, 2020

      24 F. C. Lott, Y. H. Kim, S. Sparrow, S. M. Lee, S. Li, P. A. Stott, Min, S. K., "Quantifying human impact on the 2018 summer longest heat wave in South Korea", 101, S103–S108, https://doi. org/10.1175/BAMS-D-19-0151.1., 2020

      25 Jeong, J. I., S. W. Yeh, R. J. Park., "Dissimilar effects of two El Niño types on PM2.5 concentrations in East Asia", 242, 1395–1403, https://doi. org/10.1016/j. envpol.2018.08.031, 2018

      26 Jeong, J. I., R. J. Park, "Effects of the meteorological variability on regional air quality in East Asia", 69, 46–55, https://doi. org/10.1016/j. atmosenv.2012.11.061, 2013

      27 S. W. Yeh, Yeo, S. R., W. S. Lee, "Two Types of Heat Wave in Korea Associated With Atmospheric Circulation Pattern", Atmospheres, 124, 7498–7511, https://doi. org/10.1029/2018JD030170, 2019

      28 B.-M. Kim, Kim, S.-J., "Arctic warming and its influence on East Asian winter cold events: a brief recap", 29, 3–12, https://doi. org/10.13679/j. advps.2018.1.00003, 2018

      29 Buchard, V., Coauthors, "The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies", 30, 6851–6872, https://doi. org/10.1175/JCLI-D-16-0613.1, 2017

      30 J. S. Hong, Yeh, S. W., Y. J. Won, Y. G. Ham, M. Kwon, K. J. Lee, K. H. Seo, "The record-breaking heat wave in 2016 over South Korea and its physical mechanism", 146, 1463–1474, https://doi. org/10.1175/MWR-D-17-0205.1, 2018

      31 H. Shiogama, Mori, M., M. Watanabe, M. Kimoto, J. Inoue, "Robust Arctic seaice influence on the frequent Eurasian cold winters in past decades", 7, 869–873, https://doi. org/10.1038/ngeo2277, 2014

      32 H. Nakamura, T. Miyasaka, S.-W. Son, P. Martineau, Hwang, J., "The Role of Transient Eddies in North Pacific Blocking Formation and Its Seasonality", 77, 2453–2470, https://doi. org/10.1175/JAS-D-20-0011.1, 2020

      33 D. Coumou, Wang, S. S. Y., R. R. Gillies, L. Zhao, J. H. Yoon, H. Kim, "2019b: Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?", 20, https://doi. org/10.1002/asl.933, 2019

      34 D. H. Cha, S. Y. Jun, Noh, E., M. S. Park, J. Kim, J. H. Kim, H. G. Kim, "2021: The Role of the Pacific-Japan Pattern in Extreme Heatwaves Over Korea and Japan", 48, https://doi. org/10.1029/2021GL093990, 2021

      35 C. Li, Yuan, Y., W. Zhou, H. Yang, "Influences of the Indian ocean dipole on the asian summer monsoon in the following year", 28, 1849–1859, https://doi. org/10.1002/joc.1678, 2008

      36 H. Nakamura, Y. Kosaka, Mori, M., M. Watanabe, M. Kimoto, "A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling", 9, 123–129, https://doi. org/10.1038/s41558-018-0379-3, 2019

      37 F. Xu, Z. Liu, Y. Yang, S. Wang, Luo, M., G. Ning, "Observed heatwave changes in arid northwest China: Physical mechanism and long-term trend", 242, 105009, https://doi. org/10.1016/j. atmosres.2020.105009, 2020

      38 Coauthors, Rai, P., "Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing", 278, https://doi. org/10.1016/j. envpol.2021.116865, 2021

      39 Barnston, A. G., R. E. Livezey, "Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns", 115, 1083– 1126, https://doi. org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0. CO;2, 1987

      40 A. Lin, S. Yang, Deng, K., C. Li, C. Hu, "Unprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST mode", 12, 246–253, https://doi. org/10.1080/16742834.2019.1605807, 2019

      41 D. Coumou, Rousi, E., K. Kornhuber, G. Beobide-Arsuaga, F. Luo, "Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia", 13, https://doi. org/10.1038/s41467-022-31432-y, 2022

      42 H. Murakami, S. Kapnick, Qian, Y., P. Hsu, "Effects of Anthropogenic Forcing and Natural Variability on the 2018 Heatwave in Northeast Asia", 101, S77–S82, https://doi. org/10.1175/BAMS-D-19-0156.1, 2020

      43 Dotse, S. Q., M. I. Petra, L. Dagar, L. C. De Silva, "Influence of Southeast Asian Haze episodes on high PM10 concentrations across Brunei Darussalam", 219, 337–352, https://doi. org/10.1016/j. envpol.2016.10.059, 2016

      44 H. Chen, Li, H., J. Sun, J. Ma, H. Wang, "Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China?", 31, 4705– 4725, https://doi. org/10.1175/JCLI-D-17-0429.1, 2018

      45 Lin, Z., "Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall", 31, 1366–1376, https://doi. org/10.1007/s00376-014-3171-y, 2014

      46 C.-H. Ho, S.-K. Hur, Oh, H.-R., J. Kim, D.-S. R. Park, C.-K. Song, "Possible Relationship of Weakened Aleutian Low with Air Quality Improvement in Seoul, South Korea", 57, 2363–2373, https://doi. org/10.1175/JAMC-D-17-0308.1., 2018

      47 C. K. Park, S. K. Min, Kim, M. K., K. O. Boo, J. S. Oh, J. H. Kim, "Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea", 39, 1166–1180, https://doi. org/https://doi. org/10.1002/joc.5869., 2019

      48 H. Chen, Y. Gao, S. He, Li, H., H. Wang, "North Atlantic Modulation of Interdecadal Variations in Hot Drought Events over Northeastern China", 33, 4315–4332, https://doi. org/10.1175/JCLI-D-19-0440.1, 2020

      49 Coauthors, Kim, H. C., "Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea", 7, 4710, https://doi. org/10.1038/s41598-017-05092-8, 2017

      50 A. Cai, Z. Liu, L. Yang, Guan, Q., F. Wang, C. Xu, "Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China", 230, 189–198, https://doi. org/10.1016/j. envpol.2017.06.045, 2017

      51 L. Ma, Z. Sun, X. An, Wang, C., P. Zhang, M. Cui, "Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing", 215, 165–177, https://doi. org/10.1016/j. atmosres.2018.08.022, 2019

      52 A. M. Mestas-Nuñez, P. J. Trimble, Enfield, D. B., "The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental", 28, 2077–2080, https://doi. org/10.1029/2000GL012745, 2001

      53 J.-H. Chu, Yanai, M., S. Esbensen, "Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets", 30, 611–627, https://doi. org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0. CO;2, 1973

      54 Chambers, J., "Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018", 163, 539–558, https://doi. org/10.1007/s10584-020-02884-2, 2020

      55 Coauthors, Oh, H. R., "Impact of Chinese air pollutants on a record-breaking PMs episode in the Republic of Korea for 11–15", 223, https://doi. org/10.1016/j. atmosenv.2020.117262, 2020

      56 Coauthors, Randles, C. A., "The MERRA-2 Aerosol Reanalysis 1980 Onward Part I: System Description and Data Assimilation Evaluation", 30, 6823– 6850, https://doi. org/10.1175/JCLI-D-16-0609.1, 2017

      57 B. K. Moon, Y. K. Hyun, M. K. Kim., Kim, H. K., J. Y. Park, "Three distinct atmospheric circulation patterns associated with high temperature extremes in South Korea", 11, 1–14, https://doi. org/10.1038/s41598-021-92368-9, 2021

      58 B. WU, T. J. ZHOU, LIN, J. S., "Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation?", 9, 451–457, https://doi. org/10.1080/16742834.2016.1233800, 2016

      59 L. Wang, Xu, P., W. Chen, "The British–Baikal Corridor: A teleconnection pattern along the summertime polar front jet over Eurasia", 32, 877–896, https://doi. org/10.1175/JCLI-D-18-0343.1, 2019

      60 C. H. Ho, Y. S. Choi, Lee, S., "High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions", 45, 7240–7247, https://doi. org/10.1016/j. atmosenv.2011.08.071, 2011

      61 Ding, R., K. J. Ha, J. Li, "Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean", 34, 1059–1071, https://doi. org/10.1007/s00382-009-0555-2, 2010

      62 H. Kawase, M. Watanabe, M. Arai, Imada, Y., H. Shiogama, "The July 2018 high temperature event in Japan could not have happened without human-induced global warming", 15, 8–12, https://doi. org/10.2151/sola.15A-002, 2019

      63 J. W. Roh, S. W. Yeh., R. J. Park., Jeong, J. I., "Statistical predictability of wintertime PM2.5 concentrations over East Asia using simple linear regression", 776, https://doi. org/10.1016/j. scitotenv.2021.146059, 2021

      64 A. M. da Silva, V. Buchard, R. Leduc, Provençal, S., N. Barrette, "Evaluation of PM surface concentrations simulated by Version 1 of NASA s MERRA Aerosol Reanalysis over Europe", 8, 374–382, https://doi. org/10.1016/j. apr.2016.10.009, 2017

      65 J. Heo, S. Y. Kim, Ryou, H. gon, "Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea", 240, 963–972, https://doi. org/10.1016/j. envpol.2018.03.066, 2018

      66 G. Huang, Hu, L., "The changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere", 139, 261–274, https://doi. org/10.1007/s00704-019-02970-1, 2020

      67 Nitta, T., "Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation", Ser. II, 65, 373–390, https://doi. org/10.2151/jmsj1965.65.3_373, 1987

      68 C. H. Ho, L. S. Chang, J. Kim, J. B. Lee, Hur, S. K., H. R. Oh, C. K. Song, "Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns", 218, 1324– 1333, https://doi. org/10.1016/j. envpol.2016.08.090., 2016

      69 He, C., X. Wang, W. Liao, T. Zhou, S. C. Liu, R. Liu, "How does El Niño- Southern Oscillation modulate the interannual variability of winter haze days over eastern China?", 651, 1892–1902, https://doi. org/10.1016/j. scitotenv.2018.10.100, 2019

      70 A. Navarra, Ward, M. N., "Pattern Analysis of SST-Forced Variability in Ensemble GCM Simulations: Examples over Europe and the Tropical Pacific", 10, 2210–2220, https://doi. org/10.1175/1520-0442(1997)010<2210:PAOSFV>2.0. CO;2, 1997

      71 Choi, N., Y. K. Lim, M. I. Lee, K. M. Kim, D. H. Cha, "Decadal changes in the interannual variability of heat waves in East Asia caused by atmospheric teleconnection changes", 33, 1505–1522, https://doi. org/10.1175/JCLI-D-19- 0222.1, 2020

      72 C. H. Ho, S. Lee, Lee, M. H., H. J. Song, "The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes", 30, 7493–7504, https://doi. org/10.1175/JCLI-D-16-0094.1, 2017

      73 K. Y. Kim, Lee, J., "Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea", 175, 199–209, https://doi. org/10.1016/j. atmosenv.2017.12.013, 2018

      74 Deng, K., Z. Wang, S. Yang, A., P. Zhao, M. Ting, "Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability", 32, 3761–3775, https://doi. org/10.1175/JCLI-D-18-0256.1, 2019

      75 R. Lu, X. Hong, Sun, X., S. Li, "Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid- 1990s", 36, 811–822, https://doi. org/10.1007/s00376-019-8169-z, 2019

      76 S. W. Yeh, Yoon, J., "Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon", 23, 4525–4537, https://doi. org/10.1175/2010JCLI3352.1, 2010

      77 H. Wang, Zhong, W., Z. Yin, "The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing-Tianjin-Hebei region", 19, 5941–5957, https://doi. org/10.5194/acp-19-5941-2019, 2019

      78 Ryu, Y. H., S. K. Min, "What matters in public perception and awareness of air quality? Quantitative assessment using internet search volume data", 15, https://doi. org/10.1088/1748-9326/ab9fb0, 2020

      79 Lee, W. S., M. I. Lee, "Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns", 36, 4815–4830, https://doi. org/10.1002/joc.4671, 2016

      80 Coauthors, Overland, J. E., "How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?", 16, https://doi. org/10.1088/1748-9326/abdb5d, 2021

      81 H. C. Kim, S. Kim, O. Kim, Kim, B. U., "Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea", 66, 863–873, https://doi. org/10.1080/10962247.2016.1175392, 2016

      82 B. K. Moon, M. Kwon, M. K. Kim, Kim, H. K., "2020b: Dynamic mechanisms of summer Korean heat waves simulated in a long-term unforced Community Climate System Model version 3", 21, https://doi. org/10.1002/asl.973, 2020

      83 J. B. Ahn, R. Lu, Li, X., "Combined effects of the British-Baikal corridor pattern and the silk road pattern on Eurasian surface air temperatures in summer", 34, 3707–3720, https://doi. org/10.1175/JCLI-D-20-0325.1, 2021

      84 C. H. Ho., Y. G. Lee, Lee, S., H. J. Choi, C. K. Song, "Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16-20, 2008", 77, 430–439, https://doi. org/10.1016/j. atmosenv.2013.05.006., 2013

      85 Cheol Kim, H., Coauthors, "Synoptic perspectives on pollutant transport patterns observed by satellites over East Asia: Case studies with a conceptual model", https://doi. org/10.5194/acp-2016-673, 2016

      86 H. Wang, Zou, Y., Z. Xie, Y. Wang., P. J. Rasch, "Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline", 20, 4999–5017, https://doi. org/10.5194/acp-20-4999-2020, 2020

      87 C. Li, Zhang, G., X. Yang, G. Zeng, "Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40- year period", 54, 3003–3020, https://doi. org/10.1007/s00382-020-05155-z, 2020

      88 C. Yoo, S. W. Yeh, R. J. Park, Jeong, Y. C., J. I. Jeong, J. H. Yoon, "2023 Intrinsic atmospheric circulation patterns associated with high PM2.5 concentration days in South Korea during the cold season", 863, https://doi. org/10.1016/j. scitotenv.2022.160878., 2022

      89 C. Azorin-Molina, Shi, P., J. A. Guijarro, G. Zhang, F. Kong, D. Chen, "Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources", 215, 1–11, https://doi. org/10.1016/j. atmosres.2018.08.013., 2019

      90 D. Gong, Z. Han, S. J. Kim, P. Shi, J. Yang, Gao, M., "Footprints of Atlantic multidecadal oscillation in the low-frequency variation of extreme high temperature in the Northern Hemisphere", 32, 791–802, https://doi. org/10.1175/JCLI-D- 18-0446.1, 2019

      91 D. Youn, Y. Kim, Y. Bin Lim, Seo, J., J. Y. Lee, J. Y. Kim, H. Kim, H. Cher Jin, "On the multiday haze in the Asian continental outflow: The important role of synoptic conditions combined with regional and local sources", 17, 9311–9332, https://doi. org/10.5194/acp-17-9311-2017., 2017

      92 H. Nakamura, Takaya, K., "A formulation of a phase-independent waveactivity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow", 58, 608–627, https://doi. org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0. CO;2, 2001

      93 Chen, X., T. Zhou, "Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley", 51, 4403–4419, https://doi. org/10.1007/s00382-017-3871-y, 2018

      94 B. Wu, S. Ding, Liu, L., "On the Association of the Summertime Shortwave Cloud Radiative Effect in Northern Russia With Atmospheric Circulation and Climate Over East Asia", 49, https://doi. org/10.1029/2021GL096606, 2022

      95 B. M. Kim, M. Y. Song, Lee, D., J. Y. Choi, J. H. Yoon, J. H. Jeong, H. C. Kim, D. G. Lee, "Relationship Between Synoptic Weather Pattern and Surface Particulate Matter (PM) Concentration During Winter and Spring Seasons Over South Korea", Atmospheres, 127, https://doi. org/10.1029/2022JD037517., 2022

      96 D. S. R. Park, Y. Kim, Y. Bin Lim, Seo, J., J. Y. Kim, D. Youn, "Effects of meteorology and emissions on urban air quality: A quantitative statistical approach to long-term records (1999-2016) in Seoul, South Korea", 18, 16121–16137, https://doi. org/10.5194/acp-18-16121-2018., 2018

      97 C. H. Ho, Y. S. Choi, S. Lee, Oh, H. R., L. S. Chang, J. Kim, D. Chen, C. K. Song, "Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea", 109, 23–30, https://doi. org/10.1016/j. atmosenv.2015.03.005., 2015

      98 C. Shi, Z. Liang, T. Wang, Lu, Q., J. Wang, J. Rao, D. Guo, "Observational Subseasonal Variability of the PM2.5 Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming", 39, 1623–1636, https://doi. org/10.1007/s00376-022-1393-y., 2022

      99 A. Dai, Zhou, C., K. Wang, D. Qi, D. Chen, "Conditional Attribution of the 2018 Summer Extreme Heat over Northeast China: Roles of Urbanization, Global Warming, and Warming-Induced Circulation Changes", 101, S71–S76, https://doi. org/10.1175/BAMS-D-19-0197.1., 2020

      100 Coauthors, Zhang, T., "Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze–Huaihe River basin: the North Atlantic capacitor effect", 59, 2331–2343, https://doi. org/https://doi. org/10.1007/s00382-022-06212-5, 2022

      101 B.-U. Kim, S. Kim, Kim, H. C., J. H. Cho, E. Kim, C. Bae, "Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory", 17, 10315–10332, https://doi. org/10.5194/acp-17-10315-2017., 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼